News

A genetic analysis hints at why COVID-19 can mess with smell

People with variants near smell-related genes may have a higher risk of losing smell or taste.
Erin Garcia de Jesús, Science News
By Erin Garcia de Jesús, Science News
Jan. 23, 2022

For many people, one of the fastest tip-offs that they have COVID-19 is the loss of taste or smell. Now researchers have pinpointed some genetic variants in people that may make it more likely that the coronavirus might rob them of these senses.

A study of nearly 70,000 adults with COVID-19 found that individuals with certain genetic tweaks on chromosome 4 were 11% more likely to lose the ability to smell or taste than people without the changes, researchers report January 17 in Nature Genetics. The data come from people who’d had their DNA analyzed by genetic testing company 23andMe and self-reported a case of COVID-19.

Two genes, UGT2A1 and UGT2A2, that help people smell reside in the region of chromosome 4 linked to sensory loss during infection, epidemiologist Janie Shelton of 23andMe and colleagues found. Both genes make enzymes that metabolize substances called odorants, which produce distinctive smells.

Studies suggest that loss of smell, a hallmark symptom of COVID-19, stems from infections taking hold in smell-supporting cells called sustentacular cells. It’s possible that the genetic variants near UGT2A1 and UGT2A2 could affect how the two genes are turned on or off to somehow mess with smell during an infection, Shelton says.

The team combined loss of smell and taste in one survey question so the study can’t parse whether the genetic variants are involved in the loss of one sense over the other. “When you lose your taste of smell, often your taste is highly diminished,” Shelton says. Taste can also go away without loss of smell.

Some people have a sustained loss of smell, even after the coronavirus leaves their bodies, Shelton says. Understanding how the virus snuffs out sniffing ability could help researchers find ways to bring it back.

This story was originally published by Science News, a nonprofit independent news organization.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Erin Garcia de Jesús, Science News
Erin Garcia de Jesús, Science News

Erin I. Garcia de Jesus is a staff writer at Science News. She holds a Ph.D. in microbiology from the University of Washington and a master’s in science communication from the University of California, Santa Cruz.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Here’s the latest good and bad news about COVID-19 drugs
News

Here’s the latest good and bad news about COVID-19 drugs

May 26, 2022

After vaccines, antivirals and a monoclonal antibody are the next line of defense.

Zinc is a metal essential to life
News

Zinc is a metal essential to life

May 25, 2022

Scientists have discovered a protein that helps keep cells alive when zinc levels are low.

The mechanism of the monkeypox antiviral
News

The mechanism of the monkeypox antiviral

May 24, 2022

As monkeypox becomes an international concern, interest grows in tecovirimat; this smallpox drug targets a structural protein that helps wrap the virus in a second lipid bilayer.

Researchers investigate self-regulation of an enzyme with critical cellular functions
News

Researchers investigate self-regulation of an enzyme with critical cellular functions

May 24, 2022

They found that one mechanism of CK1 activity, and thus one mechanism of regulation, is the self-phosphorylation of a conserved amino acid residue in its catalytic domain.

What is monkeypox?
Science Communication

What is monkeypox?

May 23, 2022

A microbiologist explains what’s known about this smallpox cousin.

A simple method to determine phase preference of proteins on live cell membranes
Journal News

A simple method to determine phase preference of proteins on live cell membranes

May 22, 2022

“The phase preference of molecules used to be difficult and time-consuming to establish. This new method, detected by chance, provides results in at most 15 minutes on live cells,” Thorsten Wohland said.