Journal News

Early immune response may improve cancer immunotherapies

Natasha  Wadlington
By Natasha Wadlington
January 23, 2020

Viruses, bacteria and cancer have many ways to replicate and survive in our bodies. Viruses and bacteria invade a cell directly to avoid detection. Cancer cells have the advantage of being native in the body. However, the body has safeguards against such sneaky tactics.

In a paper published in the Journal of Biological Chemistry, University of Illinois at Chicago researchers and colleagues report a new mechanism for detecting foreign material during early immune responses.

“There are proteins in the cell that await the presence of foreign material,” said Marlene Bouvier, senior author and UIC professor of microbiology and immunology at the college of medicine. “One protein, called endoplasmic reticulum aminopeptidase 1, or ERAP1, is programmed to find foreign material, like viral and bacterial proteins, and break it into smaller parts, also known as peptides. Another protein — major histocompatibility complex class I, or MHC I — is programmed to attach itself to a foreign peptide and move it to the cell’s surface. With the foreign peptide outside the cell, immune cells can recognize and destroy the infected cell.”

BOUVIER LAB
An X-ray crystallography-generated image of a long foreign peptide (purple) being partially held inside MHC I protein’s surface groove (gray).

This is an example of a normal process, Bouvier said, but sometimes a foreign peptide, once bound to MHC I, remains in the cell. This happens when the foreign material is not broken down to a small enough size or is too long.

Bouvier and colleagues used X-ray crystallography (a method to see structures on an atomic level) and mass spectrometry (used to identify peptide length by mass) to show that ERAP1 can cut extra-long peptides even after they have bound to MHC I.

“X-ray crystallography allowed us to determine three-dimensional structures to see how these longer peptides bound to the MHC I groove with high resolution,” Bouvier said. “Using an ERAP1 enzymatic assay with mass spectrometry gave us the ability to show, for the first time, that ERAP1 can trim peptides bound to MHC I. These tools allowed us to develop a model of this new immune response mechanism.”

Bouvier said this new information may help researchers leverage ERAP1 to fight infections and cancer.

“This research can have major implications for immunotherapies,” she said. “For example, cancer cells do not always present enough peptides to be labeled as ‘foreign’ — allowing the cancer cells to replicate and grow. But if you have a way to manipulate how ERAP1 generates cancer peptides, then you can hopefully skew the peptide repertoire that is presented on the cell surface in our favor. This is the most translational application of our research.”

Lenong Li and Mansoor Batliwala from the department of microbiology and immunology in the UIC College of Medicine are co-authors on the paper.

This article originally was published by the University of Illinois at Chicago. It has been edited for ASBMB Today.

Natasha  Wadlington
Natasha Wadlington

Natasha Wadlington is a freelance science writer. She has a Ph.D. in neurobiology from the University of Chicago. 

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Proteomics reveals hallmarks of aging in brain stem cells
Journal News

Proteomics reveals hallmarks of aging in brain stem cells

July 09, 2020

Early in adulthood, the brain regenerates lost myelin effectively, but remyelination falters with age. Researchers seek to understand why — and what the change may mean for people with multiple sclerosis.

Ocean virus hijacks carbon-storing bacteria
Journal News

Ocean virus hijacks carbon-storing bacteria

July 07, 2020

A Journal of Biological Chemistry paper reports that these minuscule interactions could have ripple effects on global carbon dioxide levels.

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments
News

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments

July 04, 2020

Nearly 6 million Americans live with Alzheimer’s disease without solid treatment options.

Summer food science
Stroopwafels

Summer food science

July 02, 2020

For those of you bound for a summertime holiday weekend, we dug into recent research on the yummy foods you might serve at a socially distant picnic.

How lipid droplets stay in shape
Journal News

How lipid droplets stay in shape

June 30, 2020

Andrew Greenberg and colleagues discovered that the protein perilipin is involved in storage and hydrolysis of neutral lipids within these key structures in cells.

The bat-virus détente
News

The bat-virus détente

June 28, 2020

Bats cope with myriad viruses, including the one causing Covid-19, with few ill effects. Scientists are probing their immune systems to fathom how they do it. The answers might help infected people, too.