Linking two enzymes turns plastic-eating bacteria into super-digesters
Plastic is everywhere. Scientists have found tiny bits of microplastic even in the extremes of the Earth – from the deep-sea of the Mariana Trench to the peaks of the Pyrenees – and damaging life around us. While source reduction can be one of the most effective ways to reduce plastic waste, how do we deal with all of the plastic that already exists, polluting our oceans and overflowing out of landfills?

Polyethylene terephthalate, also known as PET and one of the most common types of plastic, is unfortunately notoriously difficult to break down. In 2016 however, scientists found a new species of bacteria outside of a bottle-recycling facility capable of decomposing plastic. The discovery revealed that the bacteria's abilities depend on two specific enzymes. These enzymes work together in a two-step process to break plastic down into smaller molecules that the bacteria can turn into energy.
A new study published in the Proceedings of the National Academy of Sciences demonstrates a way to improve the two-enzyme system. While naturally existing as two separate enzymes – PETase and MHETase – the researchers physically linked them together. The attached enzymes worked together more efficiently than the same two enzymes when unlinked. Depending on the length of the linking segment between them, the attached enzymes were able to release almost double the amount or more of the final broken down product.
With this process, PET, could be broken down by the bacteria in days, a process which would take hundreds of years in the environment.
But breaking down plastic only deals with part of the issue of plastic waste. Recovering the plastic waste already in the ocean and other corners of the planet to deliver to recycling or decomposing facilities remains a daunting challenge. And even faced with the knowledge that we need to reduce plastic, the world has only been ramping up its production levels. Although these results are exciting, we're still far from solving our growing plastic problem.
This story originally appeared on Massive Science, an editorial partner site that publishes science stories by scientists. Subscribe to their newsletter to get even more science sent straight to you.

Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How signals shape DNA via gene regulation
A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.