Journal News

From the journals: JLR

Caleigh Findley
By Caleigh Findley
December 22, 2020

Membrane organization in nerve cells. Targeting lipids in liver disease. Balancing longevity and starvation resistance. Read about recent papers on these topics in the Journal of Lipid Research.


Membrane organization in nerve cells

Nerve cells, or neurons, are the primary communication cells in your brain. Projections from these cells' bodies, called neurites, mediate all incoming and outgoing messages. Researchers know that the plasma membrane aligning neurites is especially important for communication, with specialized sections in different areas of the cell. But how, exactly, do neurons establish these distinct sections?

JLR-FTJ-400x391.jpg
Leterrier/NeuroCyto Lab, INP
This image, captured at the Institute of NeuroPhysiopathology in Marseille,
France, shows two neurons with neurite projections from the cell body.

Hideaki Kuge and colleagues at Kochi University in Japan describe their efforts to answer this question in their recent paper published in the Journal of Lipid Research. This group's prior work focused on 1-oleoyl-2-palmitoyl-phosphatidylcholine, or OPPC, a rare phospholipid species produced by acyl chain remodeling of phosphatidylcholine. Acyl chain remodeling occurs when either phospholipase A1 or A2, or PLA1 and PLA2, cuts a phospholipid acyl chain to attach a different fatty acid group. This team previously showed that OPPC localized at neurite tips after stimulation with nerve growth factor, or NGF, highlighting PLA1 activity as a mediating factor. These results led to further investigation into the potential role of local acyl-chain remodeling in membrane organization.

The researchers stained neurite tips for several known PLA1 enzymes and found pancreatic lipase-related protein 2, or PLRP2, expressed at the tips and colocalizing with OPPC. Moreover, stimulation of the neuron by NGF induced changes to the expression of PLRP2. Using the gene-editing technique CRISPR–Cas9 to silence PLRP2 expression, the researchers found that loss of PLRP2 decreased expression of OPPC at the neurite tips. Loss of PLRP2 also reduced the surface expression of an important membrane protein called the dopamine transporter, or DAT. This membrane component allows the reuptake of dopamine back into the cell, an important process for neuronal homeostasis and communication.

They also saw that syntaxin 4, or Stx4, a protein involved in vesicle trafficking to the membrane, interacts with OPPC domains, dependent on PLRP2 expression. Silencing of Stx4 through the same gene-editing method showed that surface expression of DAT also requires Stx4. Vesicle immunoprecipitation assays confirmed the presence of PLRP2, Stx4 and DAT in the same transport vesicles. Together, these findings show the essential role of a local acyl-chain remodeling factor, PLRP2, in mediating neuronal membrane specialization.


Targeting lipids in liver disease

Lipids, including fatty acids, steroids, and other molecules, are essential for maintaining the structure and function of cells. These metabolic building blocks are deposited into each cell as an organelle called a lipid droplet. The 17-beta hydroxysteroid dehydrogenase 13, or HSD17B13, gene encodes a liver lipid droplet enzyme important for fat storage. While researchers know little about the composition and function of HSD17B13, mutations that impair the function of this gene can prevent liver injury, disease or cancer.

Yanling Ma of the National Institute of Diabetes and Digestive and Kidney Diseases and a team of U.S. colleagues sought to better understand the inner workings of HSD17B13 in their study published in the Journal of Lipid Research. Results showed that targeting the HSD17B13 enzyme to the lipid droplet requires three specific N-terminal fragments. One of the fragments also may factor in the proper protein folding of HSD17B13 in the endoplasmic reticulum. The team then used a similar gene, HSD17B11, to successfully predict and verify important residues for HSD17B13's enzymatic activity. These findings offer clues about the functional role of HSD17B13 in disease and provide potential targets for drug development.


Balancing longevity and starvation resistance

The human body regulates its energy reserve according to how much food it receives over a given period. Many factors contribute to this balance whether the body gets plenty of fuel (food) or none at all. Among the metabolic proteins involved in regulating this process are lipins. Under fasting conditions, lipins move to the cell's nucleus to change gene expression in response to reduced energy intake.

In a study published in the Journal of Lipid Research, Stephanie E. Hood and a team at the University of Arkansas explored how lipin migration to the nucleus and enzymatic activity affect life expectancy and starvation resistance. Researchers created a fruit fly mutant model that lacked the correct signal to move lipins into the nucleus. When fed properly, these flies were healthier and had a longer life expectancy. Yet this came at a cost, as the mutant flies were also less resilient against starvation-induced death. Results showed changes to several genes involved in metabolism, feeding behaviors and immunity in response to contrasting levels of food availability. This study highlights the diverse roles of lipins in modulating genomewide responses to energy intake and the importance of lipins in starvation resistance.

Caleigh Findley
Caleigh Findley

Caleigh Findley is a fourth-year Ph.D. candidate in pharmacology and neuroscience at Southern Illinois University School of Medicine.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

From the journals: MCP
Journal News

From the journals: MCP

January 28, 2021

The saliva peptidome in oral cancer, proteins targeted by an oncology therapy and effector protein localization to host cell mitochondria. Read about recent papers on these topics in Molecular & Cellular Proteomics.

Increasing diversity to improve health care — for all of us
Diversity

Increasing diversity to improve health care — for all of us

January 27, 2021

The National Institutes of Health’s new All of Us program aims to gather medical records, survey responses and DNA samples from one million or more individuals of different races, ethnicities, ages and geographic regions.

The COVID-19 vaccine race heats up
Journal News

The COVID-19 vaccine race heats up

January 26, 2021

A lab in India created an easy-to-produce COVID-19 vaccine candidate that provokes a strong immune response in guinea pigs and can withstand temperatures as high as 37 C for up to a month.

Vitamin K: A little-known but noteworthy nutrient
News

Vitamin K: A little-known but noteworthy nutrient

January 23, 2021

Most people know about vitamins A, B, C, D and/or E. Scientists are now realizing there is more to know about this less appreciated nutrient.

A mold’s dangerous responses to its environment
Journal News

A mold’s dangerous responses to its environment

January 19, 2021

To understand how a toxin is synthesized and why, researchers stressed a fungus and investigated how its proteome changed.

Linking two enzymes turns plastic-eating bacteria into super-digesters
News

Linking two enzymes turns plastic-eating bacteria into super-digesters

January 18, 2021

But these bacteria won’t save us: we still need to use far less plastic to save the planet