Journal News

How inflammation changes antigen presentation

Laurel Oldach
Oct. 13, 2021

Amid the complexity of the immune system, where many highly specialized cell types perform particular functions, it can be easy to overlook the contribution of ordinary cells. Healthy or not, non–immune cells routinely present tens of thousands of peptides at a time on their surface for inspection by roving T cell sentinels. The peptides, originating from the proteins being expressed and degraded inside each cell, give a window into a cell’s state of health.

Arie Admon, a biochemist and emeritus professor at the Technion–Israel Institute of Technology in Haifa, studies these peptides, known as the immunopeptidome. “The peptides alert the immune system about pathogen infection,” Admon said. “Without them, we would be dead in a matter of minutes.”

Peptides arrive on the surface of a non–immune cell in the embrace of proteins called class 1 human leukocyte antigens, or HLAs. (Class 2 HLAs are expressed in professional antigen-presenting cells.) HLAs bind short peptides from proteins degraded inside the cell and present them on the membrane. Thanks to high genetic variation in HLA genes, which affects binding preferences, and to variation in protein degradation, each individual’s immunopeptidome has a dizzying variety of peptides. Still, T cells can recognize nonself peptides at vanishingly low abundance — as few as five or 10 viral or cancerous peptides out of thousands on one cell’s surface can trigger its destruction.

For a long time, immunopeptidome researchers couldn’t match that sensitivity. “Before, we were analyzing one peptide at a time,” Admon said. With modern proteomics, “Suddenly we can analyze thousands, tens of thousands within hours.”

MCP-immunopeptidome-890x668.jpg
An artist’s rendering shows an interaction between a T cell and an antigen-presenting cell (below). The lower cell’s MHC receptors are shown in orange, with antigens in the immunopeptidome shown in green. This MCP study’s authors investigated how peptides from within the cell found their way to a related antigen-presenting complex.

In a recent article in the journal Molecular & Cellular Proteomics, part of a special issue on the immunopeptidome, Admon and trainees, including first authors Liran Komov and Dganit Kadosh, report on how an interferon released during viral infection changes the immunopeptidome.

Interferons alter protein synthesis and degradation and boost antigen processing for display. To determine the overall effect of these changes, the authors used isotope labeling to infer each protein’s rates of synthesis, degradation and incorporation into the immunopeptidome.

They found two protein populations. Some, dubbed retirees, were degraded long after synthesis; others were made and turned over even before they matured. Interferon treatment caused an uptick in the latter peptides, which Admon compared to industrial quality control.

“It’s like a factory,” he said. “Somebody along the production line of, let’s say, cars, is standing there, and at every step they’re taking some parts from the production line, breaking them apart as a quality-control approach.”

Increasing such turnover during infection may help cells present viral peptides for faster detection. In addition, the immunopeptidome showed the researchers traces of increased turnover in protein complexes, such as the ribosome and the proteasome, that change their makeup to alter activity during inflammation. The researchers proposed that, during the switchover, excess subunits were degraded and were more apt to appear in the immunopeptidome. The physiological effect of that increased churn in subunits is unclear. In addition, viral infection in a real organism is much more complex than interferon treatment of cultured cells, so the impact of greater turnover in a true infection remains to be seen.

Still, Admon said, a better understanding of the immunopeptidome could have translational potential. “It’s a lever that can help design drugs and vaccines that can save a lot of human lives.”

Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Finding a third form of fat
Journal News

Finding a third form of fat

Oct. 26, 2021

When brown fat was discovered in human adults, it came as a surprise. A classic JBC study found another surprise: White fat cells could be coaxed into a phenotype resembling brown fat.

My cat’s coat is mostly white with dark tabby patches. What’s going on?
Science Communication

My cat’s coat is mostly white with dark tabby patches. What’s going on?

Oct. 24, 2021

A researcher uses a tweetorial to figure out the underlying genetics for their cat’s coat.

Dalit scientists face barriers in India’s top science institutes
Diversity

Dalit scientists face barriers in India’s top science institutes

Oct. 23, 2021

Despite decades-old inclusion policies, Dalits are systematically underrepresented in science institutes in India. Why?

‘It goes both ways’
Interview

‘It goes both ways’

Oct. 21, 2021

This year’s theme of “location, location, location” refers to the scenic meeting spot and to a new way of looking at lipids.

From the journals: JLR
Journal News

From the journals: JLR

Oct. 19, 2021

Predicting drug-induced lysosomal fat buildup. Minimizing side effects of atherosclerosis treatment. Finding a key to sepsis diagnosis and treatment. Read about papers on these topics recently published in the Journal of Lipid Research.

A new way of looking at concussions
News

A new way of looking at concussions

Oct. 17, 2021

Emerging research suggests that even mild hits to the head may damage the tiny lymphatic vessels that clear toxic chemicals and cellular debris from the brain.