News

Speedy treatment against drug-resistant bacteria

A short take on interesting academic work
Kirsten Eller
By Kirsten Eller
Oct. 9, 2021

A new technique my colleagues and I developed that can kill deadly, multidrug-resistant bacteria in real time could be used to generate targeted therapies that replace traditional, increasingly ineffective antibiotics.

Bacteria follow the same basic genetic process that all organisms do: DNA, which contains instructions on how an organism will look and function, is copied into an intermediate form called RNA that can be translated into proteins and other molecules the organism can use.

PNAs-445x263.jpg
Kristen Eller, CC BY-ND
PNAs can be introduced to interrupt the process in which DNA is converted
into protein or other useful biological molecules necessary for life.

The technique we developed at the Chatterjee Lab at the University of Colorado Boulder uses a synthetic version of RNA called PNA, or peptide nucleic acid, to disrupt this basic process in bacteria. Our PNA molecule clings to the bacterial RNA, blocking it from carrying out its job. Because this molecule is a perfect match to bacterial RNA, it binds very tightly to the RNA and resists degradation. This means that it can not only escape the bacteria’s error detection processes but also prevent that RNA from being translated into proteins and other useful biological molecules. This impediment can be lethal to the bacteria.

Our study, which we recently published in Communications Biology, demonstrates the therapeutic potential of a technique that can design, synthesize and test PNA treatments in under a week.

Most antibiotics aren’t specific enough to target only infectious bacteria without also destroying the body’s good bacteria. Our technology, however, uses noninfectious versions of multidrug-resistant bacteria to create highly specific molecules. By targeting just the pathogen of interest, these PNA therapeutics may avoid the harm that current antibiotics pose to the body’s good bacteria.

FAST-603x404.jpg
Kristen Eller, CC BY-ND
The Facile Accelerated Specific Therapeutic (FAST) platform can produce therapies against multidrug-resistant
bacteria in under a week.

Why it matters

Bacteria’s adaptation to survive current antibiotics, or antibiotic resistance, is on the rise.

Medicine’s current arsenal of treatments mostly consist of naturally occurring antibiotics that were isolated more than 30 years ago. Discovery of new antibiotics in nature has stagnated while bacteria continue to evolve and evade current treatments. And even if scientists were to find a new natural antibiotic, research shows that bacteria will begin to develop resistance within as little as 10 years, leaving us in the same predicament as before.

New types of therapies need to be considered for a post-antibiotic era, a time when our arsenal of antibiotics is no longer effective. By using a system that can target specific bacteria and be continuously modified based on emerging resistance patterns, doctors would no longer have to rely on chance discoveries. Treatments can adapt with bacteria.

What still isn’t known

Although we explore multiple characteristics that determine which RNA sequences are the best targets, more research is necessary to identify the most effective PNA therapeutics against multidrug-resistant bacteria. As our study only tested our new strategy on cell cultures in the lab, we’ll also need to see how it works in living animals to maximize the effectiveness of this kind of treatment.

What’s next

Our team is currently testing the technology in different animal models against different types of infections. We are also exploring other PNA delivery options, including adapting our bacterial delivery system to probiotic strains so it can integrate with the existing healthy bacteria population in the body.

With further development, our goal is to adapt the platform to target diseases that also use the same basic genetic processes as bacteria, such as viral infections or cancer.

The Research Brief is a short take about interesting academic work.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Kirsten Eller
Kirsten Eller

Kirsten Eller is a Ph.D. candidate in the chemical engineering program at the University of Colorado Boulder.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Finding a third form of fat
Journal News

Finding a third form of fat

Oct. 26, 2021

When brown fat was discovered in human adults, it came as a surprise. A classic JBC study found another surprise: White fat cells could be coaxed into a phenotype resembling brown fat.

My cat’s coat is mostly white with dark tabby patches. What’s going on?
Science Communication

My cat’s coat is mostly white with dark tabby patches. What’s going on?

Oct. 24, 2021

A researcher uses a tweetorial to figure out the underlying genetics for their cat’s coat.

Dalit scientists face barriers in India’s top science institutes
Diversity

Dalit scientists face barriers in India’s top science institutes

Oct. 23, 2021

Despite decades-old inclusion policies, Dalits are systematically underrepresented in science institutes in India. Why?

‘It goes both ways’
Interview

‘It goes both ways’

Oct. 21, 2021

This year’s theme of “location, location, location” refers to the scenic meeting spot and to a new way of looking at lipids.

From the journals: JLR
Journal News

From the journals: JLR

Oct. 19, 2021

Predicting drug-induced lysosomal fat buildup. Minimizing side effects of atherosclerosis treatment. Finding a key to sepsis diagnosis and treatment. Read about papers on these topics recently published in the Journal of Lipid Research.

A new way of looking at concussions
News

A new way of looking at concussions

Oct. 17, 2021

Emerging research suggests that even mild hits to the head may damage the tiny lymphatic vessels that clear toxic chemicals and cellular debris from the brain.