JLR: Virtual issue sheds light on a key risk factor for heart disease
Because lipids such as cholesterol and triglycerides are hydrophobic and tend to clump up, rather than dissolve, in water, they need help getting around inside the body. Lipoproteins are complex assemblies with hydrophilic outer shells that package hydrophobic lipids in their core, allowing them to hitch a ride through the bloodstream. These delivery particles play an important role in the absorption of dietary lipids from the small intestine and also transport lipids to and from the liver.

High levels of one particular class of lipoprotein, known as lipoprotein (a), are associated with atherosclerosis, inflammation and thrombosis, but no treatments are available in the clinic that specifically lower Lp(a), and much of what governs Lp(a) assembly is still unknown.
A new virtual issue from the Journal of Lipid Research titled “Lipoprotein (a): Many strides made, yet there is a long road ahead” explores the past, present and future status of Lp(a) research and showcases researchers pushing this field forward. This issue was assembled by JLR Junior Associate Editor Gissette Reyes-Soffer from Columbia University Irving Medical Center in New York City.
Several papers collected in this issue offer insights into how various Lp(a)-reducing drugs work. In one of these studies, Enkhmaa Byambaa and colleagues at the University of California, Davis, and the University of Hong Kong demonstrated that alirocumab — an inhibitor of the lipid-binding enzyme PCSK9 — could lower Lp(a) levels regardless of the isoform of proteins in Lp(a).
A study by Frederick Raal and an international team of researchers suggests that another PCSK9 inhibitor, evolocumab, reduces Lp(a) levels partly by increasing the expression of LDL receptors.
Elisa Waldmann and Klaus Parhofer at Ludwig Maximilian University of Munich wrote a review that discusses apheresis as an effective method of selectively clearing Lp(a) from the blood and reducing risk of cardiovascular disease.
Another review, penned by George Thanassoulis at McGill University, describes the association of Lp(a) with aortic valve disease and outlines steps toward developing much-needed preventive and therapeutic strategies.
Join the ASBMB Today mailing list
Sign up to get updates on articles, interviews and events.
Latest in Science
Science highlights or most popular articles

Your genetics influence how resilient you are to cold temperatures – new research
Research suggests that if you’re deficient in a certain muscle protein, your body can maintain a higher core temperature and you shiver less when exposed to cold.

Understanding cellular function to understand life
Geoffrey Hesketh will speak during the Molecular & Cellular Proteomics early career researcher session on proximity-dependent biotinylation at the 2021 ASBMB Annual Meeting.

Decoding organ communication systems
Ilia Droujinine will speak during the Molecular & Cellular Proteomics presentation on biological insights revealed by proteomics at the 2021 ASBMB Annual Meeting.

Branon works to break barriers in science and higher education
Tess Branon will speak on proximity-dependent biotinylation during the Molecular & Cellular Proteomics early-career researcher session at the 2021 ASBMB Annual Meeting.

Brain Injury Awareness Month 2021
In the U.S., about 2.8 million people sustain a traumatic brain injury annually. Learn about recent research on TBI-related dementia, dysfunctional mitochondria and other work powering the march toward better therapies.

The evolution of proteins from mysteries to medicines
An essay in observance of National Protein Day.