Journal News

JBC: Researchers link
new protein to Parkinson’s

Laurel Oldach
October 01, 2019

Researchers in Japan are reporting new insight into how the Parkinson’s disease-associated protein parkin selects its targets. The finding might improve experimental therapies for Parkinson’s that aim to boost parkin activity.

This image of cells with damaged mitochondria shows overlap
Koyano et al./JBC 2019
This image of cells with damaged mitochondria shows overlap, in yellow, between parkin protein in green and the mitochondria, shown in red.

Cells depend on parkin to help get rid of damaged mitochondria. The research, published in the Journal of Biological Chemistry, suggests that parkin depends on other proteins, including one called MITOL that has not been linked previously to Parkinson’s disease, to direct it to those damaged mitochondria.

Parkin adds a degradation tag called ubiquitin to proteins on the mitochondrial surface. In some patients with familial Parkinson’s disease, parkin activity is disrupted and bad mitochondria cannot be destroyed. Harmful byproducts from those bad mitochondria can damage neurons. By understanding how parkin works and what goes wrong when it’s mutated, researchers hope also to help patients with other forms of Parkinson’s disease.

While other ubiquitin-tagging proteins, known as E3 ligases, recognize specific amino acid sequences on their substrates, parkin has many known substrates that don’t seem to share a sequence in common. While studying how parkin chooses its substrates, researchers led by Fumika Koyano in Noriyuki Matsuda’s lab at the Tokyo Metropolitan Institute of Medical Science discovered that parkin can tag any lysine-containing protein with ubiquitin — even a bacterial protein not ordinarily found in the cell — as long as it’s present at the surface of the mitochondria.

“Parkin is not regulated by its substrate specificity,” Koyano said of the finding. Instead, control of parkin activity comes from how it is recruited and activated by other proteins.

The discovery that activated parkin is not terribly selective led Koyano and her colleagues to take a closer look at parkin’s recruitment and activation. Some details of that process are well known; for example, a protein called PINK1 is known to boost parkin activity. But Koyano and colleagues discovered a new step that must happen before PINK1 can contribute to parkin activation. They found that parkin acts more rapidly when a first ubiquitin molecule is already present, acting as a seed for the addition of more ubiquitins. In most cases, the researchers found, this seed ubiquitin is added by a protein called MITOL, which had not been linked previously to Parkinson’s.

The research could contribute to the design of new drugs, some of which aim to boost parkin activity to slow the advance of Parkinson’s disease.

“If we achieve upregulation of seed ubiquitylation on mitochondria,” Koyano said, “it might accelerate parkin recruitment and parkin activation to eliminate damaged mitochondria more efficiently.”

Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Stopping the devil in the dust
Feature

Stopping the devil in the dust

April 07, 2020

As clinicians, veterinarians and research scientists close in on potential vaccines for the devastating fungal illness Valley fever, the largest barrier likely remains outside the lab.

Life's little oscillations
News

Life's little oscillations

April 05, 2020

Concentrations of molecules rise and fall, genes switch on and off, and circadian clocks keep time. These biochemical fluctuations are crucial for myriad biological needs, and cells couldn't function without them.

A small trial finds that hydroxychloroquine is not effective for treating coronavirus
News

A small trial finds that hydroxychloroquine is not effective for treating coronavirus

April 05, 2020

Despite the recent approval of this drug for use against COVID-19, questions remain as to the efficacy of this treatment.

Team Cryo ices Mass Spec’s hopes in JBC Methods Madness tourney
Journal News

Team Cryo ices Mass Spec’s hopes in JBC Methods Madness tourney

April 03, 2020

In the inaugural JBC Methods Madness Tournament, cryo­–EM/ET gave structural biologists around the world something to cheer about, beating mass spectrometry 51% to 49% —​ a margin thinner than shaved ice. 

A small army of researchers races to build a coronavirus interactome
News

A small army of researchers races to build a coronavirus interactome

April 01, 2020

Scientists at eight institutions in the U.S. and Europe have used a protein interaction map to identify 69 drugs that might work against SARS-CoV-2, the virus that causes COVID-19.

Parkinson's  Awareness Month
Health Observance

Parkinson's Awareness Month

April 01, 2020

It is the second-most common progressive neurodegenerative disease, occurring in 1% of people over the age of 60 and in 5% of people over 85.