Journal News

Partial agonist drug design for cannabinoid receptors

Justin  Lovett
Sept. 13, 2022

G protein–coupled receptors, or GPCRs, are essential to signal transduction. The human genome encodes hundreds of GPCRs, which have been associated with diseases such as diabetes and cardiovascular abnormalities. Consequently, many GPCRs are drug targets.

Cannabinoid receptors are GPCRs expressed in our central and peripheral nervous systems as well as our immune system. Drugs targeting cannabinoid receptors 1 and 2, known as CB1 and CB2, initially showed great promise for the treatment of pain, obesity and inflammation but were removed from the market after they were shown to have adverse effects on patients. Researchers found that full agonists, which maximally activate the receptors when bound, were especially harmful. Therefore, many have turned their attention to the potential of partial agonists, which produce a smaller effect.

Delta-9-tetrahydrocannabinol, or Δ9-THC, is the euphoric psychoactive compound in marijuana. Researchers have found that it acts as a partial agonist of CB1 and has positive effects in the treatment of Parkinson’s and other neurodegenerative diseases. However, the Food and Drug Administration still bans the sale of most THC products.

Soumajit Dutta, a Ph.D. candidate at the University of Illinois at Urbana–Champaign, uses molecular dynamic, or MD, simulations to study ligand interactions with CB1 in hopes of understanding how full and partial agonists interact with the receptor. This could enable selective drug development targeting cannabinoid receptors. Combining his interests in computation and in mechanisms of allosteric modulation, Dutta and his team used computational analysis to understand why THC only partly activates CB1.  They recently published this research in the Journal of Biological Chemistry.

Using ligand and protein structures from the literature, Dutta performed unbiased molecular dynamics simulation with analysis by Markov state modeling to simulate the binding of THC to CB1 in two poses, one that resembles agonist binding and one that resembles antagonist binding.

Full agonists of CB1 “overstimulate the receptor, leading to negative side effects such as seizures or loss of motor function,” Dutta said, because a full agonist fills the large binding pocket, overexciting the receptor. On the other hand, THC is small and does not occupy much space in the binding pocket, allowing mobility within the pocket in order to activate the receptor without overstimulating.

An essential component in the activation of the CB1 receptor is called the toggle switch, a tryptophan residue located in the binding pocket. Dutta made the novel finding that Δ9-THC had less interaction with the toggle switch residue within the active site pocket than a full agonist, which could explain why it works as only a partial agonist.

This research provided essential information about the mechanism of Δ9-THC binding to CB1 and CB2 so that drug developers can begin to design scaffolds to target CB1 specifically. They hope such molecules will alleviate the negative side effects seen in early agonist cannabinoid receptor drugs. Meanwhile, Dutta plans to build on his research by looking at additional ligands in the database that also act as partial agonists on cannabinoid receptors.

The opioid and cannabinoid receptors are involved in pain sensation, mood, appetite and memory. Agonists are potent analgesics: endorphin (red) and tetrahydrocannabinol (green).
The opioid and cannabinoid receptors are involved in pain sensation, mood, appetite and memory. Agonists are potent analgesics: endorphin (red) and tetrahydrocannabinol (green).

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Justin  Lovett

Justin Lovett is a graduate student at Stephen F. Austin State University in Bidisha Sengupta’s laboratory focusing on research in biophysical chemistry.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.

Pathogen-derived enzyme engineered for antibiotic design
Journal News

Pathogen-derived enzyme engineered for antibiotic design

Aug. 6, 2025

Engineered variants of a bacterial enzyme developed at the University at Buffalo accept larger substrates, paving the way for new acinetobactin-based antimicrobials. Read more about this recent JBC paper.

Omega-3 fats linked to healthy aging and improved heart metabolism
Journal News

Omega-3 fats linked to healthy aging and improved heart metabolism

Aug. 1, 2025

Scientists from the University of Iowa find that a diet high in polyunsaturated fatty acids from fish oil increases cardiac triglyceride uptake and improves insulin sensitivity. Read more about this recent JLR study.