Journal News

Using a network to snare the cause of kidney disease

Seema Nath
Sept. 10, 2024

Proteins in their correct shapes are the building blocks of properly functioning bodies. When proteins misfold or unfold, they malfunction, leading to life-threatening diseases.

The zinc-binding protein leukocyte cell-derived chemotaxin-2, or LECT2, is synthesized in liver cells for secretion into the blood. When misfolded, it aggregates in the kidneys and liver, resulting in organ failure and end-stage kidney diseases. Accumulation of misfolded LECT2, called LECT2 amyloidosis, or ALECT2, is most common in Hispanic adults; it has no known biomarkers, and the only diagnosis option is a kidney biopsy.

In ALECT2 patients, both copies of the LECT2 gene harbor a mutation, which researchers think contributes to the disease. This mutation is common in the general population, however, leading researchers to believe that other physiological stressors act in concert with the mutation to cause ALECT2. Leading candidates for these stressors are loss of LECT2’s bound zinc ion and flow shear as the protein travels through blood vessels.

To learn more about this relationship, Stewart N. Loh’s team at the State University of New York Upstate Medical University and Dacheng Ren’s lab at Syracuse University designed a microfluidic device to mimic blood flow through the human kidney. They recently published a paper about their work on the aggregation of LECT2 in kidney disease in the Journal of Biological Chemistry.

“We can do benchtop assays or go to animal models for biological studies,” Ren said, “but none of those systems have real-time observation capabilities, and here the microfluidic device comes into play.”

Ren’s team created a microfluidic chip mimicking the blood capillaries in a kidney. The researchers individually pumped wild-type and mutant LECT2 proteins purified by Loh’s team into the device at the physiological flow rate.

Images of arterial system and microfluidic device
JBC
The microfluidic device designed by the researchers, right, mimics the branched vasculature of the human kidney, left, to study protein aggregation.

“Dr. Ren’s lab recorded images in real time as the protein was aggregating at the smallest channels corresponding to the smallest dimensions of kidney that go into the glomerulus,” Loh said, “and you could see the protein is clogging those channels going upstream, resembling what you see in kidney diseases.”

The researchers calculated the density and percentage of aggregates clogging the channels at a specific time to compare how the wild-type and the mutant aggregates formed. They then used cryo-electron microscopy to observe the aggregates under stress.

The study showed for the first time two conditions that may combine to cause ALECT2 — the mutation along with loss of zinc ion and the kidney-like flow shear inducing ALECT2 in the absence of zinc.

“The next step will be adding serum albumin or changing the viscosity in a controlled way and finally using the whole blood or serum to study the actual system,” Loh said. “Our program is geared toward developing a biosensor and tools to detect these misfolded proteins in the blood before they have a chance to build up in the organ.”

Ren said the microfluidic device could be used to study the real-time behavior of biomolecules in organisms and to diagnose other circulating misfolded proteins.

“The device could potentially be scaled up for high-throughput screening studies in future,” he said.

 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Seema Nath

Seema Nath is a postdoctoral research fellow at the University of Texas Health Science Center at San Antonio. She is an ASBMB volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Training AI to uncover novel antimicrobials
Feature

Training AI to uncover novel antimicrobials

Oct. 9, 2025

Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.

AI-designed biomarker improves malaria diagnostics
Journal News

AI-designed biomarker improves malaria diagnostics

Oct. 8, 2025

Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Journal News

Matrix metalloproteinase inhibitor reduces cancer invasion

Oct. 8, 2025

Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Journal News

Antibiotic sensor directly binds drug in resistant bacteria

Oct. 8, 2025

Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.