Journal News

Spit-stimulating natural compounds could end dry mouth

John Arnst
August 28, 2020

Dry mouth might not seem like a pressing concern in the middle of a pandemic. However,the condition affects between 10% and 30% of adults and seniors — most often as a side effect of radiation therapy for head and neck cancers or as a symptom of autoimmune diseases such as Sjögren’s syndrome — and can increase a patient’s risk of developing dental decay, tooth demineralization and oral infections.

Chili-Peppers-445x500.jpg
Barbara Kosulin/Unsplash
Nonivamide is one of the active compounds in chile peppers and is more heat-stable
than capsaicin.

In a step toward developing drugs that might treat dry mouth, or xerostomia, researchers at King’s College London performed a nonbiased proteomics analysis of the effects that various natural compounds have on the channels of chemesthetic transient receptors, also known as TRP channels, expressed on the mucosal membrane that lines the inside of the mouth. They published their findings detailing the compounds’ influence on the flow and protein composition of saliva in the journal Molecular & Cellular Proteomics.

The proteomics analysis was the product of a collaboration between Jack Houghton, now a postdoctoral researcher at a University of Cambridge proteomics facility, and the lab of Gordon Proctor, a professor of salivary biology at King’s College London.

“The group has been studying dry mouth from a number of different angles for several years,” Houghton said. “But ultimately, it’s quite an open question still because it’s not just a lack of saliva, it’s also the quality or the content of the saliva that changes, and these changes cause differences in how flavors adhere to the mucosal surfaces in the mouth.”

Where saliva comes from is also a key distinction. The human mouth contains three major salivary glands — the parotid far behind the molars, the sublingual below the tongue and the submandibular beneath the mandibles — and close to 1,000 minor glands dotted across the tongue, palate and lips.

“There are hundreds of minor salivary glands in the lip — you can kind of feel them if you rub your tongue against your lip, the little hard, circular balls,” Houghton said. “We are interested in these minor glands because they are within the mucosal surfaces where we thought that we might see differences or changes in how this saliva adheres.”

Houghton and colleagues applied multibatch quantitative mass spectrometryto saliva collected from volunteers who had rinsed their mouths with a TRP agonist. They found that nonivamide, a capsaicinlike agonist of the TRPV1 channel that is naturally found in chile peppers, and menthol, an agonist of the TRMP8 channel, both caused an increase in the secretion of digestive proteins and the flow of saliva in all parts of volunteers’ mouths, including the minor glands. As both compounds are alkaloids, they would not carry the same risks as acidic tastants that stimulate salivary secretion but erode enamel tissues.

This expands on previous findings that agonists of salivary channels such as piperine, an alkaloid found in black peppers, and capsaicin, the active compound in chile peppers that has been explored for its role in mitigating obesity, high blood pressure and neuropathic pain, are able to increase the flow of saliva in patients’ mouths.

Houghton and his colleagues plan to examine the mechanisms the TRP agonists use to modify the rheological properties of saliva. Fortunately, the saliva they’ll be analyzing was collected two years ago – long before the COVID-19 pandemic limited access to both research labs and willing volunteers.

“The next steps have already been carried out, but haven’t been published yet,” Houghton said. “They are essentially further investigations into the direct stimulation of the saliva gland cells by the TRP agonists.”

John Arnst

John Arnst is a science writer for ASBMB Today.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Rodents in space Keeping bone and muscle strong on the ISS
News

Rodents in space Keeping bone and muscle strong on the ISS

September 19, 2020

Researchers helped mice stay mighty with an experiment to counter the effects of microgravity. The gene treatment might also enhance muscle and bone health on Earth — and in humans.

Understanding the impact of Type 1 diabetes susceptibility genes
Research Spotlight

Understanding the impact of Type 1 diabetes susceptibility genes

September 17, 2020

Starting in eighth grade, a series of mentors who saw something special in Sharifa Love–Rutledge helped her stay on the path to being a researcher — and becoming a mentor to others.

Re-creating coagulation in a lab
Journal News

Re-creating coagulation in a lab

September 15, 2020

Threatened arthropods are in the crossfire of medical and conservation efforts, but new research could benefit horseshoe crabs and humans alike.

Decoy receptor neutralizes coronavirus in cell cultures
News

Decoy receptor neutralizes coronavirus in cell cultures

September 13, 2020

To keep COVID-19 from infecting tissues once they’re exposed, a new study led by Erik Procko suggests luring the virus with an engineered, free-floating receptor protein that binds the virus and blocks infection.

When plants and their microbes are not in sync, the results can be disastrous
News

When plants and their microbes are not in sync, the results can be disastrous

September 06, 2020

Sheng-Yang He’s lab has discovered that plants can develop dysbiosis, a condition similar to inflammatory bowel disease in humans, with severe consequences.

A zest for synthetic biology
Feature

A zest for synthetic biology

September 02, 2020

Metabolic engineers seek to overcome the challenges of mass-producing commodity chemicals, such as limonene, an oil from orange peels.