Journal News

Proteomics reveals hallmarks of aging in brain stem cells

Laurel Oldach
July 9, 2020

Myelin, a fatty substance akin to wire insulation, allows fast neuronal signaling both within the brain and to the rest of the body. When myelin in the brain or spinal cord is damaged, adult stem cells called oligodendrocyte progenitor cells, or OPCs, respond by developing into new, fully fledged oligodendrocytes that wrap new myelin around neurons, protecting them and restoring their ability to carry fast electrical messages.

OPCs-445x445.jpg
Alerie Guzman de la Fuente
A cell culture mixture grown in the lab includes oligodendrocyte progenitor cells (green dots) and differentiated oligodendrocytes (white and red, with branches). Guzman de la Fuente conducted the cell culture and microscopy.

The human body’s ability to regenerate lost myelin declines with age. Patients with multiple sclerosis are intimately familiar with this shift. The disease, usually diagnosed in a patient’s twenties, arises when a person develops an immune response to myelin proteins. It starts out as a series of flare-ups of symptoms such as muscle weakness and numbness, followed by months or even years in remission as new oligodendrocytes provide fresh myelin. The disease shifts to a progressively worsening disability in middle age.

Neuroscientist Alerie Guzman de la Fuente is interested in developing a better understanding of oligodendrocyte progenitor cells to determine why remyelination falters with age. The answer could inform scientists who hope someday to treat MS with pro-remyelinating therapies.

“Most labs studying oligodendrocyte progenitor biology use neonatal OPCs to test drugs,” Guzman de la Fuente said. “These cells are incredibly powerful at forming myelin.” That makes them an imperfect system for studying how myelin formation goes awry with age, she said. “We think that studying adult OPCs … is more relevant to what will happen in the progressive phases of MS, in patients over 50.”

In a recent paper in the journal Molecular & Cellular Proteomics, Guzman de la Fuente and her colleagues in Robin Franklin’s lab at the University of Cambridge reported a comparison of the proteomes of OPCs from neonatal, young adult and mature mice. Franklin’s lab and others previously have studied the transcriptome of these cells. However, Guzman de la Fuente emphasized, RNA and protein levels are not always perfectly correlated.

Some protein features were quite stable through a mouse’s lifetime. Others changed dramatically. The team focused on the proteins that changed most between young and mature adulthood, and they identified a few patterns.

As with many aging cells, the stem cells from older mice showed some gene-expression drift, acting as if they had begun to differentiate but without gaining the ability to make myelin. The team noticed that as animals aged, their stem cells were more likely to have difficulty metabolizing cholesterol, an important component of myelin; older OPCs were more apt to express proteins involved in other neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, although what these changes mean remains to be elucidated . Finally, as with many aging cells, the OPCs from older mice also showed changes in protein homeostasis.

It will take time and further experiments to determine which of these changes cause the remyelination decline that appears with age. But, Guzman de la Fuente said, having a clearer picture of how the brain changes with aging can only help future efforts to treat multiple sclerosis.

Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Related articles

Ceramides’ role in liver disease
Eleonora Scorletti & Rotonya M. Carr
Share your aha moments!
Allison Frick
Winners of the ‘aha moments’ essay contest
Richard F. Ludueña, Mindy Engevik & Kazuhiko Igarashi
ASBMB welcomes new members
ASBMB Today Staff

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Ceramides’ role in liver disease
Lipid News

Ceramides’ role in liver disease

May 5, 2021

These biologically active sphingolipids have roles in apoptosis, inflammation and insulin resistance, all critical factors in the pathogenesis of chronic liver disease.

Winners of the ‘aha moments’ essay contest
Contest

Winners of the ‘aha moments’ essay contest

May 4, 2021

To celebrate our three journals going open access, we invited readers to share their moments of discovery in science. Here are the first, second and third place winners.

The 17th-century cloth merchant who discovered the vast realm of tiny microbes
News

The 17th-century cloth merchant who discovered the vast realm of tiny microbes

May 2, 2021

Although untrained in science, Antonie van Leeuwenhoek became the greatest lens-maker of his day, discovered microscopic life forms and is known today as the “father of microbiology.”

Do kids really need to be vaccinated for COVID?
News

Do kids really need to be vaccinated for COVID?

May 1, 2021

Many experts argue that Covid-19 cannot be curbed without vaccinating children. But others aren’t so sure.

Targeting nitrated proteins could lead to new cancer drugs
Annual Meeting

Targeting nitrated proteins could lead to new cancer drugs

April 30, 2021

Researchers are studying these proteins’ potential as markers that could make tumor cells easy targets for new therapies.

Gene changes and long-haul COVID
Annual Meeting

Gene changes and long-haul COVID

April 30, 2021

Airway cells exposed to SARS-CoV-2 spike protein exhibited persisting changes in gene expression.