
Insights into why loud noise
is bad for your health
Whether it is loud machinery at work, a busy freeway or a nearby airport, many people are exposed to high levels of noise. Two new mouse studies provide new insight into how this type of noise exposure can lead to high blood pressure and cancer-related DNA damage.
“Large studies have linked noise exposure to health problems in people,” said Matthias Oelze, a postdoctoral fellow at the University Medical Center of Mainz in Germany. “Our new data provides additional mechanistic insights into these adverse health effects, especially high blood pressure and potentially cancer development, both leading causes of global death.”
Oelze was scheduled to present this research at the American Society for Biochemistry and Molecular Biology annual meeting in April in San Diego. Though the meeting, to be held in conjunction with the 2020 Experimental Biology conference, was canceled in response to the COVID-19 outbreak, the research team's abstract was published in The FASEB Journal.
“These new findings, together with our other work on noise-associated cardiovascular effects, could lead to a better understanding of how noise influences health,” Oelze said. “This information could help inform policies and regulations that better protect people against diseases related to noise exposure.”
Oelze and colleagues found that healthy mice exposed to four days of aircraft noise were more likely to develop high blood pressure. For mice with pre-established high blood pressure, this noise exposure aggravated heart damage because of a synergistic increase of oxidative stress and inflammation in the cardiovascular and neuronal systems.
In another study, the researchers observed that the same noise exposure induced oxidative DNA damage in mice. This damage led to a highly mutagenic DNA lesion that was previously associated with the development of cancer in other settings.
The researchers are currently conducting several studies on the health effects of noise, including interactions of pre-established cardiovascular diseases with noise as well as behavioral effects of noise exposure in mice.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader–Willi syndrome.

Using 'nature’s mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer’s code through functional connections
A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17–21 in Cambridge, Massachusetts.