Annual Meeting

Could corals use sound to communicate?

New evidence suggests they have genes involved in receiving or emitting sound
Nancy D. Lamontagne
April 28, 2021

Corals are part of a highly complex ecosystem, but it remains a mystery if and how they might communicate within their biological community. In a new study, researchers found evidence of sound-related genes in corals, suggesting that the marine invertebrates could use sound to interact with their surroundings.

Coral reefs make up less than 1% of the ocean floor yet support more than 25% of all marine life. Around the world, coral reefs are being threatened by climate change, ocean acidification, diseases, overfishing and pollution. A better understanding of coral communication could help inform policies that aim to protect this critical ecosystem.

“A growing number of studies have shown that trees can communicate, and that this communication is important for ecosystems such as rain forests,” said Camila Rimoldi Ibanez, a high school student in the dual enrollment program at South Florida State College. “Coral reefs are often referred to as the rainforests of the sea because of the habitat they provide for a wide variety of plants and animals. Thus, we wanted to find out how coral communicates.”

Courtesy of Camila Rimoldi Ibanez and James Hawker, South Florida State College
Camila Rimoldi Ibanez works with extracted coral DNA in the lab.

Ibanez will present the new findings at the American Society for Biochemistry and Molecular Biology annual meeting during the virtual Experimental Biology 2021 meeting, to be held April 27–30. Her mentor is James Hawker, dean of arts and sciences at South Florida State College.

Many organisms that live in coral reefs perceive sound and use it to find their way to the reefs. Based on this information, the researchers decided to look for the presence of genes related to the reception and/or emission of sound in the coral Cyphastrea. Using PCR amplification, the researchers found probable evidence that two of the four genes they examined may be present in coral DNA. The genes they found — TRPV and FOLH-1 — are used for sound emission or reception in sea anemones and freshwater polyps, respectively.

In addition to performing more testing, the researchers want to sequence the TRPV and FOLH-1 genes they found to add additional evidence that these genes, or genes related to them, are present in coral.

“As we learn more about the negative impacts of sound in different kinds of ecosystems, it is vital that we set policies to protect and manage human noises in natural environments,” said Ibanez. “The more we know about how corals communicate, the better we can develop restoration and conservation projects to help corals as they face bleaching epidemics and other threats.”

Ibanez will present the findings in poster R4543.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Journal News

Computational tool helps scientists create novel bug sprays

May 20, 2025

Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Interview

Meet Lan Huang

May 19, 2025

Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.