Journal News

From the journals: MCP

Latavia Hill
April 23, 2020

A risk factor for autoimmune thyroid diseases, phenotypic adaptation in the agent that causes burn infections and a new insight on a cell cycle protein. We offer summaries of papers on these topics recently published in the journal Molecular & Cellular Proteomics.

Identification of another risk factor for AITDs

Autoimmune thyroid diseases, or AITDs, are caused by a self-mediated attack on thyroid cells and ultimately affect thyroid gland function. Two common AITDs are Hashmito’s thyroiditis, or HT, and Graves’ disease. Before clinical symptoms appear, the human body produces autoantibodies against the thyroid cells, which allows clinicians to detect these illnesses. Researchers hypothesize that thyroid peroxidase antibody, or TPOab, a commonly used diagnostic marker, has a role in autoimmunity by modulating IgG glycosylation.

Recently, Tiphaine C. Martin of King’s College and an international team published a paper in the journal Molecular & Cellular Proteomics that focused on determining whether immunoglobulin G, or IgG, glycosylation is associated with TPOAb that is positive for AITD and whether AITD and glycan structures share any genetic, heritable factors.

In this study, the researchers found that TPOAb level and AITD are associated with decreased IgG core fucosylation. Additionally, they showed that HT is linked to a decrease of antennary alpha1,2 fucose and that enrichment of IgG N-glycan traits is associated with genes FUT8 and IKZF1, which are essential for IgG core fucose formation. The researchers could not determine genetic variances between AITD and IgG N-glycan traits; however, they showed that decreased core fucosylation and antennary alpha1,2 fucose are not associated with gene expression alteration in peripheral blood mononuclear cells.

In conclusion, the researchers propose a model in which FUT8 and IKZF1 have an aberrant expression in a tissue-specific manner instead of in the blood. They think this model will show that the altered expression causes antibody-dependent cell-mediated cytotoxicity directed against the thyrocyte due to afucosylated TPOAb antibodies. In turn, they propose that this cytoxicity leads to AITD development.

mcp-FTJ-glycosylation-TPOAb0-706x408.jpg
Tiphaine Martin et al./MCP
This proposed model illustrates the role of FUT8 and IKZF1 in the development of autoimmune thyroid diseases.

How a pathogen adapts to survive

Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, causes burn wound infections and pneumonia. It produces siderophores to acquire iron for survival and can express various iron-uptake pathways with specific TonB-dependent transporters, or TBDTs, which allows itto use exosiderophores produced by other bacterial species.

Quentin Perraud of the University of Strasbourg and a team of researchers in France recently published work in the journal Molecular & Cellular Proteomics focused on understanding how P. aeruginosa selects, regulates and adapts its expression levels of iron-uptake pathways in response to environmental stimuli. In this study, the researchers showed that P. aeruginosa uses different siderophores at different chelating efficiencies, with catechol siderophores being the most powerful. They also showed that expression of the TBDTs varied when P. aeruginosa was grown in three different media, which suggests that different phenotypic patterns exist. This work also shows that P. aeruginosa can detect the presence of epithelial cells and adjust gene expression accordingly. These findings show that P. aeruginosasenses changes in its environment and alters the expression of its various iron pathways to acquire iron and effectively compete with other bacterial species.

An essential protein in the cell cycle

Each day, millions of cells undergo cell division to make daughter cells. This extensively studied cell cycle consists of four phases: a gap phase, synthesis, a second gap and mitosis. Each checkpoint in this cycle is crucial, because any irregularities can lead to uncontrollable cell growth, also known as cancer.
A recent paper by Patrick Herr of Karolinska Insitutet and a team in Sweden, published in the journal Molecular & Cellular Proteomics, focused on dissecting cell cycle dynamics at the protein level in asynchronous cells, using methods other than chemical synchronization. The researchers characterized protein oscillation patterns over the course of the cell cycle and found that many vital processes are affected. The team detected differences in mRNA abundance and phosphorylation patterns among cell cycle phase groups. They characterized predicted cell cycle–dependent proteins, including S-adenosylmethionine synthase, or MAT2A. They found that MAT2A nuclear localization was enriched in synthesis and in the second gap and mitosis, and they speculate that this protein is essential for epigenetic histone methylation during DNA replication.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Latavia Hill

Latavia Hill is a graduate student studying microbiology at the University of Kansas.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Journal News

Method sharpens proteome-wide view of structural changes

Nov. 25, 2025

Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.