Journal News

From the journals: JLR

Joseph Heath
By Joseph Heath
April 19, 2024

What can you do with artificial lipoproteins?  A new key to angiogenesis. Flavonoids counteract oxidative stress. Read about papers on these topics recently published in the Journal of Lipid Research.

 

What can you do with artificial lipoproteins?

Adiposomes are engineered lipid nanoparticles comprising a neutral lipid core surrounded by a monolayer phospholipid membrane. In a recent study in the Journal of Lipid Research, Zen Cao at the University of the Chinese Academy of Sciences and collaborators detailed how they used adiposomes to generate artificial lipoproteins, or ALPs, novel nanoparticles that mimic naturally occurring lipoproteins. They then characterized ALP functions in biological systems, validating their use as tools for research and medicine.

This transmission electron micrograph shows adiposomes, which were used to generate the artificial lipoproteins in this study.
Zen Cao/JLR
This transmission electron micrograph shows adiposomes, which were used to generate the artificial lipoproteins in this study.

The authors first explored the feasibility of generating ALPs and characterized how they compare with naturally occurring lipoproteins. Using transmission electron and confocal fluorescence microscopy, they showed that cells take up ALPs via clathrin-mediated endocytosis and the ALPs degrade like native lipoproteins. After confirming ALP viability in culture, the team moved to a mouse model; they injected fluorescently labeled ALPs into the tail veins of mice and looked at where the ALPs ended up in the body. In the heart, lung, kidneys and skeletal muscle, ALPs were metabolized like native lipoproteins. ApoE-coated ALPs have a long lifespan and promote degradation of the low-density lipoprotein receptor. The authors noted that the ALPs displayed physiological functions that were similar to naturally existing lipoproteins, such as improving glucose tolerance in mice and preventing apolipoprotein degradation when the ALPs were synthesized and exposed to trypsin. These results suggest that ALPs could be a new model for studying lipoprotein function because researchers can precisely generate them with specific lipids and apolipoproteins.

In addition, ALPs could be a useful drug delivery system with targeting molecules. While agents such as liposomes have aqueous cores, the ALPs’ hydrophobic core is ideal for housing hydrophobic drugs. Clinicians could use ALP carriers to deliver drugs to tumors since rapidly proliferating cancer cells require the uptake of fatty acids. The clathrin-mediated endocytosis pathway that the authors identified for ALPs would ensure reliable drug uptake, whereas the cellular uptake of other nanoparticle vehicles is inconsistent.

AntiSense/Wikimedia Commons
Lipoprotein particles are composed of a lipid core containing cholesteryl esters and triglycerides, and a surface coat of phospholipids, unesterified cholesterol and apolipoproteins.

 

A new key to angiogenesis

Angiogenesis, the development of new blood vessels from existing ones, occurs in two primary forms: physiological (during the development and repair of tissues) and pathological (in diseased tissues). Researchers understand many of the factors that facilitate angiogenesis but have yet to determine the roles of various prostaglandin, or PGD, synthases in driving angiogenesis.

A recent paper in the Journal of Lipid Research by Daiki Horikami and Erika Sekihachi at the University of Tokyo and collaborators described their study of how lipocalin-type PGD synthase, or L-PGDS, and hematopoietic PGD synthase, or H-PGDS, contribute to physiological and pathological angiogenesis. The authors used mice genetically engineered to be deficient for either enzyme to study retinal development. They showed that L-PGDS is expressed in endothelial and neuronal cells, and deficiency reduced physiological angiogenesis during mouse retinal development. H-PGDS is expressed in hematopoietic cells, and deficiency caused increased retinal inflammation.

The ability of H-PGDS to limit inflammation might be leveraged as a therapeutic for diabetic retinopathy, the abnormal growth of blood vessels in the retina. Future research is needed to establish the roles of L-PDGS and H-PDGS in diseases that affect other organs.

 

Flavonoids counteract oxidative stress

Eukaryotic plasma membranes contain phospholipids that create a barrier separating the intracellular and extracellular spaces. Most membrane lipids contain a polar head group and two fatty acid tails. Many of these tails are polyunsaturated and can be oxidized. This can lead to oxidative stress within membranes, cause cellular toxin buildup and alter signal transduction pathways. Oxidative stress is a factor in various diseases, including neurodegenerative, gastrointestinal, kidney and liver disorders.

A recent study in the Journal of Lipid Research by Anja Sadžak at the Ruđer Bošković Institute in Croatia and colleagues described how the researchers induced membrane defects using dodecanedioic acid, or DDA, and how flavonoids, metabolites from plants, can relieve these defects. Using a liposome model to replicate cell membrane conditions and the DDA treatment to mimic the effects of oxidative stress, the team found that DDA membrane aggregates cause pores to form. Using molecular dynamics simulations and experimental techniques, they showed that adding flavonoids to liposomes under DDA-induced oxidative stress disrupted the DDA aggregates and reversed membrane damage. Flavonoids are found in berries, citrus fruit, tea and other foods. This study highlights their potential to counteract oxidative stress and restore membrane function.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Joseph Heath
Joseph Heath

Joseph Heath is a fourth-year Ph.D. student at Duquesne University in Pittsburgh, Penn., and an ASBMB Today volunteer contributor interested in pursuing a career in science communication.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Does a protein hold the key to Alzheimer’s?
Journal News

Does a protein hold the key to Alzheimer’s?

Dec. 10, 2024

Researchers in Maryland and Massachusetts team up to study how SORL1 promotes tau trafficking and seeding in cells that leads to the neurodegenerative disorder.

Cracking the recipe for perfect plant-based eggs
News

Cracking the recipe for perfect plant-based eggs

Dec. 8, 2024

It involves finding just the right proteins. With new ingredients and processes, the next generation of substitutes will be not just more egg-like, but potentially more nutritious.

MSU researchers leverage cryo-EM for decades-in-the-making breakthrough
News

MSU researchers leverage cryo-EM for decades-in-the-making breakthrough

Dec. 7, 2024

Lee Kroos and Ben Orlando have reported the first high-resolution experimentally determined structures of the intramembrane protease SpolVFB.

From the Journals: MCP
Journal News

From the Journals: MCP

Dec. 6, 2024

Rapid and precise SARS-CoV-2 detection using mass spec. Mapping brain changes from drug addiction. Decoding plant osmotic stress response. Read about recent MCP papers on these topics.

What seems dead may not be dead
Award

What seems dead may not be dead

Dec. 4, 2024

Vincent Tagliabracci will receive the Earl and Thressa Stadtman Distinguished Scientist Award at the ASBMB Annual Meeting, April 12–15 in Chicago.

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Molecular Parasitology at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.