Proteomics study isolates drug targets
Target identification is a major stage of early drug development — the point when researchers identify a biological element implicated in a disease that can be regulated by a therapeutic agent.
One research team in Germany has recently focused on myeloid-derived suppressor cells, or MDSCs, which are blood cells that are not fully differentiated. These cells suppress immune cell activities and promote cancer, infection, and inflammatory diseases. By screening MDSCs from mice, the researchers took the first step in identifying potential targets that can modulate MDSC activity.

Johannes Krumm, a scientist at OmicScouts GmbH, and Bernhard Küster, a professor at the Technical University of Munich, collaborated with the pharmaceutical firm Merck & Co. on the study. They recently published their findings in the journal Molecular & Cellular Proteomics.
The research team used high throughput screening, a technique that allowed them to cross-test large quantities of compounds against several factors to identify potential drug targets. The screening narrowed the potential targets from 20,818 compounds in the MDSC mice cells to 104 compounds that also modulated MDSC activity in human cells.
Krumm and Küster both hope that this paper “motivates further research groups and biotech/pharma companies to consider proteomics as a tool for drug discovery,” they wrote in an email.
Proteomics combines biological assays and computer software to analyze large numbers of proteins and their associated interactions. This characterization explores the whole data set and can uncover patterns that merit further investigation.
“The strong point about proteomics is that no initial hypothesis is needed,” Krumm and Küster wrote.
In this study, their data showed that an unknown compound suppressed MDSC activity in the mice cells. They tested this compound in immunoassays with human cells where its immune activity ranged from no effect to strong effect. Following a round of proteomic analysis, they found that the active compound upregulated the expression of proteins responsible for cell detoxification; this led to a reduction in reactive oxygen species, which play a role in promoting various diseases, including cancer. By studying this pattern, the researchers determined that a strong potential mechanism of action for new drugs to modulate MDSC activity would be to upregulate proteins that reduce reactive oxygen species.
“We were rather surprised to see how selectively the active compound upregulated proteins associated with detoxification functions,” Krumm and Küster wrote.
In their analysis, they found two proteins that closely upregulated MDSC activity: Acylphosphatase 1, also known as ACYP1, and a HLA class II histocompatibility antigen gamma chain protein, also known as CD74.
In the future, drug developers looking to target MDSC immunosuppression can target the downregulation of ACYP1 and CD74 to attack MDSCs. This study is “a good example for how proteomics can be used for drug discovery in general and in mode of action hypothesis in particular,” Krumm and Küster wrote.
“By making all data available to the public,” they concluded, “we hope that biologists in the field of MDSC will find our data and chemical tool compounds useful and enriching to their own research.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

AI-designed biomarker improves malaria diagnostics
Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.

ApoA1 reduce atherosclerotic plaques via cell death pathway
Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.