Journal News

Progesterone from an unexpected source may affect miscarriage risk

Laurel Oldach
Feb. 25, 2020

About 20% of confirmed pregnancies end in miscarriage, most often in the first trimester, for reasons ranging from infection to chromosomal abnormality. But some women have recurrent miscarriages, a painful process that points to underlying issues. Clinical studies have been uneven, but some evidence shows that for women with a history of recurrent miscarriage, taking progesterone early in a pregnancy might moderately improve these women’s chances of carrying a pregnancy to term.

A recent study in the Journal of Lipid Research sheds light on a new facet of progesterone signaling between maternal and embryonic tissue. The work hints at a preliminary link between disruptions to this signaling and recurrent miscarriage.

Progesterone plays an important role in embedding the placenta into the endometrium, the lining of the uterus. The hormone is key for thickening the endometrium, reorganizing blood flow to supply the uterus with oxygen and nutrients, and suppressing the maternal immune system.

Progesterone is made in the ovary as a normal part of the menstrual cycle, and at first, this continues after fertilization. About six weeks into pregnancy, the placenta takes over making progesterone, a critical handoff. (The placenta also makes other hormones, including human chorionic gonadotropin, which is detected in a pregnancy test.) Placental progesterone comes mostly from surface tissue organized into fingerlike projections that integrate into the endometrium and absorb nutrients. Some cells leave those projections and migrate into the endometrium, where they help to direct the reorganization of arteries.

Embryo-genesis-890x340.jpg
Zephyris/Wikimedia Commons
An illustration shows the fingerlike projections called villi that attach the surface of the nascent placenta to the uterine lining.

Using cells from terminated pregnancies, Austrian researchers led by Sigrid Vondra and supervised by Jürgen Pollheimer and Clemens Röhrl compared the cells that stay on the placenta’s surface with those that migrate into the endometrium. They discovered that the enzymes responsible for progesterone production differ between those two cell types early in pregnancy.

As a steroid hormone, progesterone is derived from cholesterol. Although the overall production of progesterone appears to be about the same in migratory and surface cells, migratory cells accumulate more cholesterol and express more of a key enzyme for converting cholesterol to progesterone. Among women who have had recurrent miscarriages, that enzyme is lower in migratory cells from the placenta than it is among women with healthy pregnancies. In contrast, levels of the enzyme don’t differ between healthy and miscarried pregnancies in cells from the surface of the placenta.

The team’s findings suggest that production of progesterone by the migratory cells may have a specific and necessary role in early pregnancy and that disruption to that process could be linked to miscarriage.

“If we can identify the exact mechanisms and cells that are affected,” Vondra said, “that would lead us one step closer to understanding the big picture of what causes recurrent miscarriages and possibly to being able to intervene and allow these women to have successful pregnancies.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.

Meet Shannon Reilly
Profile

Meet Shannon Reilly

May 12, 2025

The JLR junior associate editor discusses the role of adipocytes in obesity at Weill Cornell Medical School.

Meet Donita Brady
Interview

Meet Donita Brady

May 8, 2025

Donita Brady is an associate professor of cancer biology and an associate editor of the Journal of Biological Chemistry, who studies metalloallostery in cancer.