Due Diligence

The myth of perfection

Kaoru Sakabe
February 01, 2017

With the release of the imaging software Adobe Photoshop in the 1990s, “Photoshopping” entered the English lexicon. Like Google, Photoshop seamlessly has integrated itself into the scientific enterprise. Scientists use the software to tweak images and to generate publication-quality figures. It’s just so easy to create a blemish-free image. But there are guidelines to what is and isn’t acceptable to do with the software. There are a few simple rules to remember.

First, ask yourself whether any changes are needed. The best-case scenario is to be able to present your original, unaltered data in the figure. However, journal editors realize that sometimes the best case isn’t possible — an overly dark H&E stain or an overly bright Coomassie stain of a gel are two examples.

Once you’ve decided it’s appropriate and necessary to make changes, make sure your adjustments are linear. Most journals, including the journals published by the American Society for Biochemistry and Molecular Biology, require that adjustments be made uniformly to every pixel in the entire image. That means using the brightness and contrast functions in Photoshop is acceptable within reason, since these functions apply a linear adjustment to each pixel in the image. Also, go easy on moving the slider (see the figure). Overadjusting the brightness or contrast can hide background features, which is a misrepresentation of your data. Nonlinear adjustments include adjusting the gamma settings or using the “Curves” function in Photoshop. These actions are discouraged, since they do not apply changes equally to the pixels in the image. If these adjustments are used, then you must disclose their use in the figure legend.

Aggressively overadjusting the brightness and/or contrast misrepresents the actual data that were obtained and can mask potential biologically relevant results.Aggressively overadjusting the brightness and/or contrast misrepresents the actual data that were obtained and can mask potential biologically relevant results.

Speaking of data misrepresentation, specifically enhancing, removing or obscuring features would fall into this category. Worried that a faint band won’t support your conclusions? Bothered by the cell debris in the corner of your image? Concerned that the reviewers may say that the co-localization or the co-immunoprecipitation isn’t strong enough? The temptation to enhance or remove these features is real, but this type of manipulation falls into the misconduct category and could have serious consequences.

The final image should look like your original data, warts and all. You always should inspect your final figure and ask yourself if it is a true representation of the original capture or image. If your answer is no (or kind of), you should re-evaluate your figure.

Practically speaking, if any of these issues are discovered during the review of your paper or even after it is published, they could delay publication of your article, result in a correction, or even end in a retraction. More importantly, these issues go deeper and speak about the reproducibility of the work and your integrity as a scientist. Other researchers will not be able to replicate the results shown in your article if some of the data have been enhanced or hidden selectively. Presenting your data in a transparent manner ensures that you have done your due diligence.

Kaoru Sakabe

Kaoru Sakabe is the data integrity manager at the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments
News

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments

July 04, 2020

Nearly 6 million Americans live with Alzheimer’s disease without solid treatment options.

Summer food science
Stroopwafels

Summer food science

July 02, 2020

For those of you bound for a summertime holiday weekend, we dug into recent research on the yummy foods you might serve at a socially distant picnic.

How lipid droplets stay in shape
Journal News

How lipid droplets stay in shape

June 30, 2020

Andrew Greenberg and colleagues discovered that the protein perilipin is involved in storage and hydrolysis of neutral lipids within these key structures in cells.

The bat-virus détente
News

The bat-virus détente

June 28, 2020

Bats cope with myriad viruses, including the one causing Covid-19, with few ill effects. Scientists are probing their immune systems to fathom how they do it. The answers might help infected people, too.

Organizing fat: Mechanisms of creating and organizing cellular lipid stores
Lipid News

Organizing fat: Mechanisms of creating and organizing cellular lipid stores

June 23, 2020

Mike Henne, a cell biologist at UT Southwestern, summarizes recent findings about the highly regulated production and turnover of lipid droplets.

Science of 'Seinfeld'
Essay

Science of 'Seinfeld'

June 21, 2020

Bill Sullivan was a biology graduate student when “Seinfeld” first hit the air. Thirty years on — and informed by the latest relevant science — he still ponders whether its inane scenarios were plausible.