Journal News

The proteome of the cave bear

New metric helps researchers unlock strange samples
Laurel Oldach
January 18, 2020

As a rule, it takes a genome to interpret a proteome.

A genome database gives the range of possible proteins that a sample is expected to contain, allowing a computer program to match short peptide fragments from the raw data to the full-length proteins they came from. The genome is like a picture showing how a jigsaw puzzle will look when it’s finished — and each peptide is a single tiny piece of the puzzle.

MCP-cave-bear-collage.png
Patty Blue Hayes, Jeffrey Weston Lotz,Jan Dembowski, Linda Snook
Among the exotic samples used in Richard Johnson’s study were, clockwise from top left, glacial meltwater; an agricultural pest called the citrus psyllid, which has a complex microbiome; a tenth of a gram of powdered cave bear bone; and electrosensory organs of the spotted ratfish and a skate (not pictured).

Richard Johnson, a staff scientist at the University of Washington’s department of genome sciences, has spent nearly three decades working with no picture. Before genomes were assembled and available, he became an expert in de novo peptide sequencing, piecing together the overlapping puzzle pieces from mass spectra to determine the amino acid sequence of proteins.

That ability has been coming in handy recently since Johnson started seeing more requests for environmental proteomics and other exotic analyses.

“I sit next to an oceanographer, and she does these proteomics analyses on strange samples, like glacial meltwater and seawater,” he said. “Those are cases where it’s really difficult to decide what database to even search.”

To annotate a sample from a human, a researcher can use a human genome database. But a tablespoon of ocean water or glacial runoff is likely to contain a complex community of microbes. So which genome databases should the researcher survey? Usually, researchers solve this problem by sequencing as much DNA as they can from a sample and using the result, a metagenome, to guide protein identification.

But even with a metagenome, sometimes the proteins observed in a proteomics experiment just don’t match the given reference database. “I came up with a metric that can tell you whether the protein sequence database is any good for interpreting your mass spectrometry data,” Johnson said.

The technique, which Johnson and colleagues recently published in Molecular & Cellular Proteomics, can be used to solve related problems, such as proteomic analysis of an animal whose genome has not been sequenced. “You typically use a sequence database from a closely related species and hope that the sequences did not diverge too much,” Johnson said. “Sometimes that hope is warranted, and other times it’s not.”

Johnson has used this approach to study the makeup of electrosensory organs in electric fish.

A third potential application is for analysis of very old but not fossilized tissues — those that come from extinct species, such as a vial of powdered cave bear bone that Johnson’s team obtained. Extinct species very rarely have a genome assembled, and the close-cousin conundrum is compounded by slow biochemical changes to proteins that happen over thousands of years.

But the approach doesn’t solve every problem. Johnson said, “Using this quality metric tells you how good or bad a sequence database is. But it won’t tell you what to do about it if it’s bad.”

Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A deeper insight into phospholipid biosynthesis in Gram-positive bacteria
Lipid News

A deeper insight into phospholipid biosynthesis in Gram-positive bacteria

February 18, 2020

Diego Sastre and Marcelo Guerin look at how membrane fluidity modulates the insertion of a peripheral enzyme to regulate bacterial phospholipid synthesis.

For vulnerable populations, the thorny ethics of genetic data collection
Feature

For vulnerable populations, the thorny ethics of genetic data collection

February 17, 2020

To be equitable, genetics research needs more diverse samples. But collecting that data could present ethical issues.

Anthrax vs. cancer
News

Anthrax vs. cancer

February 16, 2020

R. Claudio Aguilar explains how he joined forces with other labs in using a modified strain of anthrax to shrink tumors in dogs with terminal bladder cancer.

From the journals: JLR
Journal News

From the journals: JLR

February 11, 2020

Recent topics include interactions of the endocannabinoid pathway with the gut microbiome.

Selenium led Zhao from icy hometown to German hospitality
Award

Selenium led Zhao from icy hometown to German hospitality

February 09, 2020

JBC/Tabor award winner Wenchao Zhao studies Keshan disease, a nutrient deficiency named for the county in northeastern China where he grew up.

Dagar dissects a prostate cancer driver
Award

Dagar dissects a prostate cancer driver

February 08, 2020

This JBC/Tabor award winner has found a way to block androgen signaling in prostate cancer cells.