Lipid News

Flipping lipids to deform membranes

Naoto Takada Tomoki  Naito Hye-Won  Shin
By Naoto Takada, Tomoki Naito and Hye-Won Shin
January 07, 2020

Cell membranes change shape during such functions as membrane trafficking, cell migration and cell division. Rearrangement of cytoskeletons and interactions of various proteins, including membrane-bending proteins, regulate these changes. When the composition and asymmetric distribution of lipids between the two leaflets of the membrane bilayer change, membranes are deformed, a requirement for processes such as immune response and nutrient uptake. 

Jan19lipidnews.jpg
Hye-Won Shin
The chemically induced dimerization system allows recruitment of BAR domains to the plasma membrane upon treatment with rapamycin (top). BAR domains can generate membrane tubulation following induction of membrane deformation by P4-ATPases.

In mammalian cells, the phospholipids phosphatidylserine and phosphatidylethanolamine are abundant in the cytoplasmic leaflet of the bilayer, whereas phosphatidylcholine, or PC, and sphingomyelin are abundant in the exoplasmic leaflet. P4-ATPases, also called flippases, catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer and are crucial for membrane trafficking, but we don’t know how they are coupled to the process of vesicle formation. 

P4-ATPase–mediated phospholipid translocation might cause an imbalance of lipid mass between the leaflets of the bilayer, so our lab wanted to find out whether the flipping enzymes of the P4-ATPase family contribute to changes in the shape of cell membranes. PC is abundant in the outer leaflet, so we hypothesized that greater PC-flipping activity causes an increase in lipid mass in the inner leaflet of the plasma membrane and induces inward membrane curvature.

To test this hypothesis, we used BIN/Amphiphysin/Rvs, or BAR, domains, which can sense membrane curvature and induce tubular membrane structures via self-oligomerization. We examined plasma membrane-bending caused by BAR domains with a rapamycin-inducible dimerization system, using FK506 binding proteins, or FKBPs, and FKBP–rapamycin binding domain, or FRB, proteins, that allow for acute recruitment of BAR domains to the plasma membrane. FRB was targeted to the plasma membrane by adding the N-terminal 11 amino acids of Lyn kinase, and FKBP was fused to the BAR domain.

When one specific BAR domain, called N-BAR, is recruited to the plasma membrane, we know that it penetrates the lipid bilayer via its N-terminal amphipathic helix, causing a small inward curve to form. The protein senses this change in curvature, leading to the recruitment of more N-BAR domains, which oligomerize along a part of the membrane and trigger transformation of the membrane into a tube.

Delta-N-BAR (which lacks the N-terminal amphipathic helix of the N-BAR domain) and F-BAR domains did not do this unless ATP10A was expressed exogenously in cells. In 2015, we had published in the Journal of Biological Chemistry our finding that ATP10A flipped PC from the outer to the inner leaflet of the plasma membrane, slightly changing the shape of the plasma membrane. Delta-N-BAR and F-BAR domains sensed the change and bound to the plasma membrane. The proteins then oligomerized along the membrane and transformed that part of the membrane into an inwardly protruding tubule.

Our recent study shows that changes in the transbilayer lipid compositions induced by P4-ATPase can deform biological membranes. Increased inward plasma membrane bending by ATP10A expression enhances endocytosis. The plasma membrane also changes shape during cell migration, cancer cell invasion, cell division, nutrient uptake and entry of pathogens into cells, so lipid-flipping activity may be involved in any or all of these processes.

Naoto Takada
Naoto Takada

Naoto Takada received his master’s degree in the Shin lab in the Graduate School of Pharmaceutical Sciences at Kyoto University, Japan. He now works at a private enterprise in Japan.

Tomoki  Naito
Tomoki Naito

Tomoki Naito received his Ph.D. in the Shin lab. He is now a postdoctoral fellow in Yasunori Saheki’s laboratory in Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

Hye-Won  Shin
Hye-Won Shin

Hye-Won Shin is an associate professor of the Graduate School of Pharmaceutical Sciences at Kyoto University, Japan.
 

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Early immune response may improve cancer immunotherapies
Journal News

Early immune response may improve cancer immunotherapies

January 23, 2020

University of Illinois at Chicago researchers and colleagues report a new mechanism for detecting foreign material during early immune responses.

Do sperm offer the uterus a secret handshake?
Journal News

Do sperm offer the uterus
a secret handshake?

January 22, 2020

Why does it take 200 million sperm to fertilize a single egg? A female immune response is one reason. A molecular handshake may help sperm survive the bombardment.

A new hotspot for cyclooxygenase inhibition
Lipid News

A new hotspot
for cyclooxygenase inhibition

January 21, 2020

Drugs like aspirin dampen inflammation by inhibiting certain enzymes but can have nasty gastrointestinal side effects, so enzymologists are investigating the structure of the enzymes’ active sites in hopes of designing more selective inhibitors.

Your blood type may influence your vulnerability to the winter vomiting virus
News

Your blood type may influence
your vulnerability to the winter
vomiting virus

January 19, 2020

Norovirus is very infectious, but not everyone is equally vulnerable. Whether you get sick or not may depend on your blood type.

The proteome of the cave bear
Journal News

The proteome of the cave bear

January 18, 2020

If a peptide mass spectrum is like a jigsaw puzzle, then a genome is the picture that researchers use to piece things together. But what do you do when there’s no picture to use as a guide?

Pulse points: 2020
Wellness

Pulse points: 2020

January 16, 2020

Research can spark change. Here are examples of how scientific inquiry exposes health risks and leads to new treatments for disease.