Journal News

Why cognition declines in Type 2 diabetes patients

Oluwadamilola “Dami” Oke
Dec. 19, 2023

For years, scientists have observed a correlation between the progression of Type 2 diabetes and the onset of cognitive impairment. A new theory about the cause of this, largely based on animal, cell and human genetics studies, implicates the cytochrome P450-soluble epoxide hydrolase, or CYP450-sEH, pathway in both Type 2 diabetes and cognitive decline.

CYP450s are enzymes that break down polyunsaturated fatty acids into epoxides, metabolites that are believed to have anti-inflammatory and cell-signaling properties. However, the sEH enzyme breaks down these epoxides into diols — molecules believed to be harmful to the cell.

The cytochrome P450 enzyme breaks down polyunsaturated fatty acids into epoxides and could have a therapeutic role in treating cognitive decline.
WIKIMEDIA COMMONS
The cytochrome P450 enzyme breaks down polyunsaturated fatty acids into epoxides and could have a therapeutic role in treating cognitive decline.

Once epoxides are broken into diols, they can interfere with other normal metabolic pathways and physiological functions. Both epoxides and diols belong to the group of lipid metabolites called oxylipins.

Researchers also have found that the implicated pathway is prevalent in patients with obesity, which made a team at the University of Toronto and Sunnybrook Research Institute curious about whether an association exists between the oxylipins derived from the CYP450-sEH pathway and the three conditions: Type 2 diabetes, cognitive impairment and obesity.

According to Natasha Anita, a Ph.D. candidate at Toronto and Sunnybrook and first author of the study, the researchers were motivated to investigate this association because they had previously found “that oxylipin levels in the blood differed between people with and without small vessel disease in the brain and that the diols were associated with poorer cognitive performance and neurodegeneration.”

Knowing that diabetes increases the risk for small vessel complications and cognitive impairment, the team hypothesized that oxylipins would also be implicated in cognitive function in Type 2 diabetes patients. A report of their work was published recently in the Journal of Lipid Research.

Excluding individuals with Type 1 diabetes and neurological diagnoses, among other criteria, the researchers recruited 108 individuals with Type 2 diabetes; 51 were obese and 57 were not obese.

Using neuropsychological and verbal tests, the team assessed cognitive function, verbal fluency and mental agility. They also assessed learning and short-term and long-term memory.

In their JLR paper, the researchers wrote that their results largely agreed with the results of earlier studies in people without Type 2 diabetes. They found that increased levels of diols were associated with poorer cognitive performance.

“This is the first study to look at oxylipins in relation to cognition in Type 2 diabetes,” Anita said. “Although diabetes is an established risk factor for Alzheimer’s disease and dementia, currently there is no specific treatment for cognitive problems in this population.”

The results from this study show the CYP450-sEH pathway to be a strong potential target for therapies.

“Our current work adds to the growing number of clinical studies examining the CYP450-sEH oxylipin pathway,” Anita said. “We are hopeful that this indicates a new pharmacological target to prevent cognitive decline in this population.”

Moving forward, Anita said the team is investigating “whether these oxylipins are associated with cognitive decline over time, and whether targeting this pathway will improve cognition in people with diabetes.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Oluwadamilola “Dami” Oke

Oluwadamilola “Dami” Oke is a Ph.D. candidate of biomedical engineering at the George Washington University with an interest in communication and outreach for science advancement. She is an ASBMB Today contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.