News

Mechanism may influence infectivity of SARS-CoV-2 variants

Enzyme process alters spike protein function
Catherine  Evans
By Catherine Evans
Dec. 11, 2021

Scientists at the National Institutes of Health have found that a process in cells may limit infectivity of SARS-CoV-2, and that mutations in the alpha and delta variants overcome this effect, potentially boosting the virus’s ability to spread. The findings were published online in the Proceedings of the National Academy of Sciences. The study was led by Kelly Ten Hagen,  a senior investigator at NIH’s National Institute of Dental and Craniofacial Research.

Since the coronavirus pandemic began in early 2020, several more-infectious variants of SARS-CoV-2, the virus that causes COVID-19, have emerged. The original, or wild-type, virus was followed by the alpha variant, which became widespread in the United States in early 2021, and the delta variant, which is the most prevalent strain circulating today. The variants have acquired mutations that help them spread and infect people more easily. Many of the mutations affect the spike protein, which the virus uses to get into cells. Scientists have been trying to understand how these changes alter the virus’ function.

NIAID
Creative rendition of SARS-COV-2 virus particles with spike proteins dotting their surfaces. Image not to scale.

“Throughout the pandemic, NIDCR researchers have applied their expertise in the oral health sciences to answer key questions about COVID-19,” said NIDCR Director Rena D’Souza, D.D.S., Ph.D. “This study offers fresh insights into the greater infectivity of the alpha and delta variants and provides a framework for the development of future therapies.”

The outer surface of SARS-CoV-2 is decorated with spike proteins, which the virus uses to attach to and enter cells. Before this can happen, though, the spike protein must be activated by a series of cuts, or cleavages, by host proteins, starting with the furin enzyme. In the alpha and delta variants, mutations to the spike protein appear to enhance furin cleavage, which is thought to make the virus more effective at entering cells.

Studies have shown that in some cases protein cleavage can be decreased by the addition of bulky sugar molecules—a process carried out by enzymes called GALNTs — next to the cleavage site. Ten Hagen’s team wondered if this happens to the SARS-CoV-2 spike protein, and if so, whether it changes the protein’s function.

To find out, the scientists studied the effects of GALNT activity on spike protein in fruit fly and mammalian cells. The experiments showed that one enzyme, GALNT1, adds sugars to wild-type spike protein, and this activity reduces furin cleavage. By contrast, mutations to the spike protein, like those in the alpha and delta variants, decrease GALNT1 activity and increase furin cleavage. This suggested that GALNT1 activity may partially suppress furin cleavage in wild-type virus, and that the alpha and delta mutations overcome this effect, allowing furin cleavage to go unchecked.

Further experiments supported this idea. The researchers expressed either wild-type or mutated spike in cells grown in a dish. They observed the cells’ tendency to fuse with their neighbors, a behavior that may facilitate spread of the virus during infection. The scientists found that cells expressing mutated spike protein fused with neighbors more often than cells with the wild-type version. Cells with wild-type spike also fused less in the presence of GALNT1, suggesting that its activity may limit spike protein function.

“Our findings indicate that the alpha and delta mutations overcome the dampening effect of GALNT1 activity, which may enhance the virus’s ability to get into cells,” said Ten Hagen.

To see if this process might also occur in people, the team analyzed RNA expression in cells from healthy volunteers. The researchers found wide expression of GALNT1 in lower and upper respiratory tract cells that are susceptible to SARS-CoV-2 infection, indicating that the enzyme could influence infection in humans. The scientists theorized that individual differences in GALNT1 expression could affect viral spread.

“This study suggests that GALNT1 activity may modulate viral infectivity and provides insight into how mutations in the alpha and delta variants may influence this,” Ten Hagen said. The knowledge could inform future efforts to develop new interventions.

This research was supported by the NIDCR Division of Intramural Research. Support also came from the intramural program of the National Institute of Environmental Health Sciences.

This article originally appeared om the NIH website.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Catherine  Evans
Catherine Evans

Catherine Evans is a science writer in the communications office of the National Institute of Dental and Craniofacial Research, part of the National Institutes of Health. She writes news stories and press releases about NIDCR research, covering topics such as COVID-19, oral biology, neuroscience of pain and itch, and more.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The coronavirus may cause fat cells to miscommunicate, leading to diabetes
News

The coronavirus may cause fat cells to miscommunicate, leading to diabetes

Jan. 22, 2022

COVID-19 patients with high blood sugar had low levels of a hormone made by fat.

Researchers make sense of scents
Journal News

Researchers make sense of scents

Jan. 20, 2022

A team in India has created a user-friendly, web browser–based AI tool that can help identify and predict odorant chemicals and their receptors.

From the journals: MCP
Journal News

From the journals: MCP

Jan. 19, 2022

Making heads or tails of flatworm regeneration — and more from the journal Molecular & Cellular Proteomics.

Birds of a feather in Philly
Annual Meeting

Birds of a feather in Philly

Jan. 13, 2022

According to Meetings Committee chair Dan Raben, “Interest group events give folks in various specific disciplines and subdisciplines an opportunity to hold a mini symposium before the meeting actually begins.”

From the journals: JLR
Journal News

From the journals: JLR

Jan. 12, 2022

Targeting protein folding to combat Niemann–Pick type C1. Pinpointing substrate specificity for phospholipase A2S. A high-throughput assay of lipase activity. Read about articles on these topics recently published in the Journal of Lipid Research.

Brain wrinkles and folds matter
Feature

Brain wrinkles and folds matter

Jan. 8, 2022

Researchers are studying the mechanics of how they form.