Journal News

Researchers find potential new target for endometrial cancers

Fox Chase Cancer Communications
By Fox Chase Cancer Communications
Dec. 5, 2020

Researchers at Fox Chase Cancer Center have discovered a potential new target in the treatment of endometrial carcinoma' The research was published recently in Molecular & Cellular Proteomics.

Using multiplexed inhibitor beads and mass spectrometry, James S. Duncan, associate professor in the cancer biology research program at Fox Chase, and colleagues profiled the kinome of endometrial tumors and normal endometrial tissues and identified a network of kinases that were overexpressed, including serine/arginine-rich splicing factor kinase 1, or SRPK1.

According to Duncan, endometrial tumors frequently have alterations in protein kinases, a family of about 535 enzymes collectively termed the kinome. Kinases are altered in about one-quarter of all cancers and are considered highly susceptible to treatment with drugs because of their catalytic activity. However, only a small fraction of the kinome has been explored therapeutically.  

Multiplexed inhibitor beads and mass spectrometry is a chemical proteomic strategy that allows researchers to simultaneously look at kinase levels in cells and tumors.

"From a cancer standpoint we can identify protein kinases that are up- or downregulated in cancer," Duncan said. "Ones that are upregulated are of interest because protein kinases play a role in cancer growth, survival, and metastasis, so they often represent potential targets."

The analysis showed that SRPK1 was overexpressed in endometrial cancer tissues and that this overexpression was associated with poor survival, suggesting that SRPK1 could be involved in key tumor-associated properties, Duncan said.

"We also discovered that in combination with therapy targeting growth factors—in this case EGFR—targeting this kinase produced strong drug synergy to kill these tumors," Duncan said. This synergy was found for endometrioid cell lines and uterine serous cancer cell lines, a disease subtype with poor outcomes.

To further explore the role of SRPK1, Duncan and colleagues want to apply proteomic technology to try to understand more about how SRPK1 works and conduct experiments to see if EGFR and SRPK1 inhibition has an effect on endometrial cancer tumor models.

"This project really sums up the concept of a lot of the work that Fox Chase is trying to do when it comes to research," Duncan said. "Peggy's Pathway selected our project for funding because they thought our approach of looking at kinase signaling looked interesting, and, as a result, we have found something that may be actionable."

Peggy's Pathway for Women's Cancer Care is a charity started in honor of Peggy Pettinato, who passed away from serous endometrial carcinoma. The organization's mission is to raise funds for research into innovative treatments and early detection of endometrial cancer, the most common gynecologic malignancy in the United States.

Endometrial-cancer-890x593.jpg
Light micrograph of an endometrial adenocarcinoma.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Fox Chase Cancer Communications
Fox Chase Cancer Communications

The communications team handles communications for the National Cancer Institute–designated Fox Chase Cancer Center, part of the Temple University Health System in Philadelphia.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Ataxia: A symptom and a disease
Health Observance

Ataxia: A symptom and a disease

Sept. 25, 2023

It's International Ataxia Awareness Day.

From the journals: JLR
Journal News

From the journals: JLR

Sept. 22, 2023

Linking astrocyte lipid metabolism to microglia activation. Mathematical models of membrane binding. Read about recent papers on these topics.

Discover BMB 2024 symposia: What are they really all about?
Annual Meeting

Discover BMB 2024 symposia: What are they really all about?

Sept. 21, 2023

Read what each symposium’s organizers have to say about their sessions, including who will be speaking, who should attend — even their theme song.

Meet Sarah O’Connor
Interview

Meet Sarah O’Connor

Sept. 21, 2023

This JBC associate editor scouts the plant kingdom for intriguing pathways and hits the hiking trails in Germany.

Out with the old, in with the nucleus
Annual Meeting

Out with the old, in with the nucleus

Sept. 21, 2023

Learn about the Discover BMB 2024 symposium on signaling mechanisms in the nucleus.

Dancing with metals: Iron copper and reactive sparks
Annual Meeting

Dancing with metals: Iron copper and reactive sparks

Sept. 20, 2023

Read about the Discover BMB 2024 symposium on redox and metals in biology.