Health Observance

National Influenza Vaccination Week

John Arnst
December 02, 2019

The year may be winding down, but flu season is still heating up. If you’ve been slacking on getting your annual shot, it’s not too late — in fact, the Centers for Disease Control and Prevention designated the first week of December as National Influenza Vaccination Week. While the flu vaccine remains the best line of defense against the fever, fatigue and range of respiratory symptoms of a genuine influenza infection, ASBMB members have been investigating how influenza viruses interact with our cells and uncovering leads for new antivirals and improved vaccines.

Why glycosylation matters in building a better flu vaccine

If influenza viruses were DNA-based, we may well have developed a universal vaccine decades ago. But, as retroviruses, they have a tendency to rack up errors every time they replicate, gradually changing the makeup of their hemagglutinin and neuraminidase proteins and slipping ever beyond the protective yoke of each season’s vaccine. While efforts to develop a universal flu vaccine are under way at labs around the world, flu vaccine design processes currently don’t account for the glycosylation that influenza A viruses, the primary cause of human influenza illnesses, use to evade host antibodies. Deborah Chang and Joseph Zaia at Boston University recently made the case in the journal Molecular & Cellular Proteomics that developing methods to determine site-specific glycosylation of glycoproteins in influenza A viruses could enhance the efficacy of future flu vaccines.

Forever in search of new antivirals

Developing new antivirals can feel like an exercise in futility — just over a year after the drug Xofluza was approved for distribution in the United States, scientists at the University of Wisconsin–Madison found that influenza viruses in a quarter of patients who took the drug developed resistance to it. While few drugs make it all the way through the development pipeline, biochemists are regularly discovering compounds that can take advantage of novel mechanisms to inhibit viral replication.

Histone deacetylases play a role in preventing influenza replication

Like almost all viruses, influenza A viruses hijack host machinery to replicate. In response to evidence that an optimal acetylation environment in host cells is favorable to this process, researchers at the University of Otago in New Zealand investigated the effects of histone deacetylases, which negatively regulate acetylation, against IAVs.

Influenza viruses love lipids

After influenza has hijacked a host cell’s machinery to crank out its RNA and proteins, it needs to get them wrapped in a protective lipid envelope so that new virions can venture forth and infect more host cells. Researchers at the University of Singapore recently used a mass spectrometry-based lipidomics approach to investigate how IAVs interact with the host cells’ lipid metabolism during different stages of infection. They found that function of membrane-bound peroxisomes to be a common metabolic denominator and a potential key determinant for influenza virus replication.

Gut microbes, glycosphingolipids and influenza

Invariant natural killer T cells are versatile — they thwart tumors, attack pathogenic bacteria viruses and play a role in autoimmune diseases — and the glycosphingolipid α-galactosylceramide, produced by Bacteroides in the human gut, is key to their activation. Researchers at the University of Marburg and German Cancer Research Center recently found that conditions including colitis, consumption of a Western diet and infection by influenza A virus tend to decrease levels of αGalCer. This suggests that modulating gut microbial-derived immunogenic lipids including αGalCerML may impact immunity.

Hosts and their viruses: a thematic series of review articles

Hot off the heels of the swine flu epidemic — an H5N1 strain from the antigenic shift that happened when two starkly different influenza strains infected the same pig population — Charles Samuel helped organize a JBC minireview series with the aim of understanding the structural basis for interactions between influenza viruses and host cells. Read the series.

John Arnst

John Arnst was a science writer for ASBMB Today.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Branon works to break barriers in science and higher education
ASBMB Annual Meeting

Branon works to break barriers in science and higher education

March 03, 2021

Tess Branon will speak during the Molecular & Cellular Proteomics early career researcher session on proximity-dependent biotinylation at the 2021 ASBMB Annual Meeting.

Brain Injury Awareness Month 2021
Health Observance

Brain Injury Awareness Month 2021

March 01, 2021

In the U.S., about 2.8 million people sustain a traumatic brain injury annually. Learn about recent research on TBI-related dementia, dysfunctional mitochondria and other work powering the march toward better therapies.

The evolution of proteins from mysteries to medicines
Essay

The evolution of proteins from mysteries to medicines

February 27, 2021

An essay in observance of National Protein Day.

'Every experiment and every breakthrough matters'
Health Observance

'Every experiment and every breakthrough matters'

February 26, 2021

An interview with NYMC dean Marina K. Holz, who studies a rare disease that affects women of childbearing age.

Progeria: From the unknown to the first FDA-approved treatment
Health Observance

Progeria: From the unknown to the first FDA-approved treatment

February 25, 2021

Hutchinson–Gilford progeria syndrome is a rare, fatal genetic disease that causes premature aging.

Raising awareness and funding for Pompe disease
Health Observance

Raising awareness and funding for Pompe disease

February 25, 2021

Father-turned-advocate has founded multiple organizations to support families and search for better therapies for people with rare lysosomal storage disorder.