
Our coolest superpower: Seeing all the atoms
Wouldn't it be great if we could just see all the atoms of all the molecules, any time we wanted?
If we were able to sample something — anything — and just tell what it's made of? Where all its atoms were? Which ones were connected or ready to react?
In about the span of a century, scientists have learned more about molecules and their components than we ever thought possible. In some cases, we can already pick up a bit of dust or a tiny droplet and see where the atoms of its resident molecules are. Or we can calculate predicted structures that are so accurate they can be used to predict function.
In old comic books, this kind of X-ray vision was the stuff of superheroes. Someday, in the not-too-distant future, we might all have it.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30. See the categories.
Join us for a glimpse into the challenges and opportunities of building that future, so we can all scrutinize, predict, build, target and react to all the molecules.
Keywords: Structure, cryo-electron microscopy, microcrystal electron diffraction, alpha fold, tomography, artificial intelligence.
Who should attend: Absolutely everyone should attend. Who doesn't want a superpower?
Theme song: “Mosaic” by Art Blakey and the Jazz Messengers
This session is literally powered by electrons and photons.
New frontiers in structural biology
The rise of molecular assemblies

Chair: Rebecca Vorhees
Sarah Shahmoradian, University of Texas Southwestern Medical Center
Lorena Saelices, University of Texas Southwestern Medical Center
New approaches enabling structural science
Chair: Jose Rodriguez
Roger Castells–Graells, University of California, Los Angeles
Hosea Nelson, California Institute of Technology
Hong Zhou, University of California, Los Angeles
Seeing the chemistry of life
Chair: Hosea Nelson
Lindsey R. F. Backman, Whitehead Institute for Biomedical Research
Douglas Rees, California Institute of Technology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

What’s in a diagnosis?
When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.