Journal News

Discovery could lead to more potent garlic, boosting flavor and bad breath

Max Esterhuizen
By Max Esterhuizen
Aug. 16, 2020

For centuries, people around the world have used garlic as a spice, natural remedy, and pest deterrent – but they didn’t know how powerful or pungent the heads of garlic were until they tasted them.

But what if farmers were able to grow garlic and know exactly how potent it would be? What if buyers could pick their garlic based on its might?

A team of Virginia Tech researchers recently discovered a new step in the metabolic process that produces the enzyme allicin, which leads to garlic’s delectable flavor and aroma, a finding that upends decades of previous scientific belief. Their work could boost the malodorous - yet delicious - characteristics that garlic-lovers the world over savor.

“This information changes the whole story about how garlic could be improved or we could make the compounds responsible of its unique flavor,” said Hannah Valentino, a College of Agriculture and Life Sciences Ph.D. candidate. “This could lead to a new strain of garlic that would produce more flavor.”

The discovery of this pathway opens the door for better control of production and more consistent crops, which would help farmers. Garlic could be sold as strong or weak, depending on consumer preferences.

The research was recently published in the Journal of Biological Chemistry.

When Valentino, an Institute for Critical Technology and Applied Science doctoral fellow, and her team set out to test the generally accepted biological process that creates allicin, they found it just didn’t happen.

That’s when the team of researchers set out to discover what was really happening in garlic.

As they peeled back the layers, they realized there was no fuel to power the previous accepted biological process that creates allicin.

“By using rational design, Hannah found a potential substrate,” said Pablo Sobrado, professor of biochemistry in the College of Agriculture and Life Sciences and a member of the research team. “This is significant because by finding the metabolic pathway and understanding how the enzyme actually works and its structure gives us a blueprint of how allicin is created during biosynthesis.”

Valentino and the team – which included undergraduate students – worked in the Sobrado Lab in the Fralin Life Sciences Institute directly with the substrates that comprise garlic, doing their work solely in vitro.

Valentino-Sobrado-890x593.jpg
Hannah Valentino, left, and Pablo Sobrado, right, are conducting research that is laying the foundation for a future in which buyers can choose garlic based on its strength and flavor profile.

The researchers found that allicin, the component that gives garlic its smell and flavor, was produced by an entirely different biosynthetic process. Allyl-mercaptan reacts with flavin-containing monooxygenase, which then becomes allyl-sulfenic acid.

Importantly, the allicin levels can be tested, allowing farmers to know the strength of their crops without the need for genetic engineering. Greater flavor can simply be predicted, meaning powerful garlic could simply be bred or engineered.

“We have a basic understanding of the biosynthesis of allicin that it is involved in flavor and smell, but we also now understand an enzyme that we can try to modulate, or a modify, to increase or decrease the level of the flavor molecules based on these biological processes,” Sobrado said.   

Because of their work, the future awaits for fields of garlic harsh enough to keep even the most terrifying vampires at bay.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Max Esterhuizen
Max Esterhuizen

Max Esterhuizen is a communications and marketing specialist who has spent his career in higher education and in sports journalism. As the assistant director for communications and marketing for the College of Agriculture and Life Sciences at Virginia Tech, Max tells and shares stories inside the college, AREC, and Virginia Cooperative Extension. He also helps lead the Office of Communications and Marketing in a digital-first strategy that aligns with the college’s advancement priorities and helps promote the research and academics of the college as well as the impact of Virginia Cooperative Extension and Virginia Agricultural Experiment Station. While in the college, Max has served as the editor of the college’s flagship publication, which has won national awards and landed media placements in outlets ranging from NPR’s Science Friday to Rolling Stone.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Journal News

Computational tool helps scientists create novel bug sprays

May 20, 2025

Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Interview

Meet Lan Huang

May 19, 2025

Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.