Why hydroxychloroquine and chloroquine don't block coronavirus infection of human lung cells

Katherine  Seley-Radtke
By Katherine Seley-Radtke
August 08, 2020

The big idea

A paper came out in Nature on July 22 that further underscores earlier studies that show that neither the malaria drug hydroxychloroquine nor chloroquine prevents SARS-CoV-2 – the virus that causes COVID-19 – from replicating in lung cells.

Jovan Gec/Wikimedia Commons
This simple ball and stick model represents an uncharged molecule of hydroxychloroquine, a malaria drug that some have touted as a treatment for COVID-19.

Most Americans probably remember that hydroxychloroquine became the focus of numerous clinical trials following the president’s statement that it could be a “game changer.” At the time, he appeared to base this statement on anecdotal stories, as well as a few early and very limited studies that hydroxychloroquine seemed to help patients with COVID-19 recover.

Many in the antiviral field, including myself, questioned the validity of both, and in fact, one of the papers was later disparaged by the scientific society and the editor of the journal that published it.

Since then, HQC has had a bumpy ride. It was initially approved by the FDA for emergency use. The FDA then quickly reversed its decision when numerous reports of deaths caused by heart arrhythmias emerged. That news brought many clinical trials to a halt. Regardless, some scientists continued to study it in hopes of finding a cure for this deadly virus.

How the work was done

The new study was carried out by scientists in Germany who tested HCQ on a collection of different cell types to figure out why this drug doesn’t prevent the virus from infecting humans.

Their findings clearly show that that HQC can block the coronavirus from infecting kidney cells from the African green monkey. But it does not inhibit the virus in human lung cells – the primary site of infection for the SARS-CoV-2 virus.

In order for the virus to enter a cell, it can do so by two mechanisms - one, when the SARS-CoV-2 spike protein attaches to the ACE2 receptor and inserts its genetic material into the cell. In the second mechanism, the virus is absorbed into some special compartments in cells called endosomes.

Depending on the cell type, some, like kidney cells, need an enzyme called cathepsin L for the virus to successfully infect them. In lung cells, however, an enzyme called TMPRSS2 (on the cell surface) is necessary. Cathepsin L requires an acidic environment to function and allow the virus to infect the cell, while TMPRSS2 does not.

In the green monkey kidney cells, both hydroxychloroquine and chloroquine decrease the acidity, which then disables the cathepsin L enzyme, blocking the virus from infecting the monkey cells. In human lung cells, which have very low levels of cathepsin L enzyme, the virus uses the enzyme TMPRSS2 to enter the cell. But because that enzyme is not controlled by acidity, neither HCQ and CQ can block the SARS-CoV-2 from infecting the lungs or stop the virus from replicating.

Why it matters

This matters for several reasons. One, much time and money has been spent studying a drug that many scientists said from the very beginning was not going to be effective in killing the virus.

The second reason is that the studies that have reported antiviral activity for hydroxychloroquine were not in epithelial lung cells. Thus, their results are not relevant to properly studying SARS-CoV-2 infections in humans.

What’s next?

As scientists proceed with investigating new drugs as well as trying to repurpose old ones, like hydroxychloroquine, it is critical that researchers take the time to think about their study design.

In short, those of us involved in antiviral drug development should all take a lesson from this study. It is important not only to focus our efforts on pursuing drugs that will directly shut down viral replication, but also to study the virus in the primary site of infection.The Conversation

The Research Brief is a short take about interesting academic work.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]
Katherine  Seley-Radtke
Katherine Seley-Radtke

Katherine Seley-Radtke is a professor of chemistry and biochemistry and president-elect of the International Society for Antiviral Research at the University of Maryland, Baltimore County.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Rodents in space Keeping bone and muscle strong on the ISS

Rodents in space Keeping bone and muscle strong on the ISS

September 19, 2020

Researchers helped mice stay mighty with an experiment to counter the effects of microgravity. The gene treatment might also enhance muscle and bone health on Earth — and in humans.

Understanding the impact of Type 1 diabetes susceptibility genes
Research Spotlight

Understanding the impact of Type 1 diabetes susceptibility genes

September 17, 2020

Starting in eighth grade, a series of mentors who saw something special in Sharifa Love–Rutledge helped her stay on the path to being a researcher — and becoming a mentor to others.

Re-creating coagulation in a lab
Journal News

Re-creating coagulation in a lab

September 15, 2020

Threatened arthropods are in the crossfire of medical and conservation efforts, but new research could benefit horseshoe crabs and humans alike.

Decoy receptor neutralizes coronavirus in cell cultures

Decoy receptor neutralizes coronavirus in cell cultures

September 13, 2020

To keep COVID-19 from infecting tissues once they’re exposed, a new study led by Erik Procko suggests luring the virus with an engineered, free-floating receptor protein that binds the virus and blocks infection.

When plants and their microbes are not in sync, the results can be disastrous

When plants and their microbes are not in sync, the results can be disastrous

September 06, 2020

Sheng-Yang He’s lab has discovered that plants can develop dysbiosis, a condition similar to inflammatory bowel disease in humans, with severe consequences.

A zest for synthetic biology

A zest for synthetic biology

September 02, 2020

Metabolic engineers seek to overcome the challenges of mass-producing commodity chemicals, such as limonene, an oil from orange peels.