News

T cells could be the key in developing an effective COVID-19 vaccine

Our bodies have two main types of T cells. Together they can help us fend off this virus
Paige E. Pistono
By Paige E. Pistono
Aug. 1, 2020

Many have embraced antibodies and the possibility of immunity to COVID-19 as the key to reopening society and the economy. Serology testing — also known as antibody testing — can indicate whether someone is producing an immune response to the virus.

But we still do not know whether the presence of antibodies in recovered patients holds promise for long-lasting immunity. Insight from immunological studies on recovered SARS patients infected in 2003 showed that antibody levels wane after just a few years. A different immune response caused by T cells provides long term protection, even 11 years post-infection.

Based on this data, it is likely that T cell responses play a substantial role in developing protective immunity against SARS-CoV-2, the virus that causes COVID-19. There are two main types of T cells: helper and killer T cells. When they recognize a virus, helper T cells signal to activate other types of immune cells, while killer T cells release molecules that destroy the virus. 

In a new study published in the journal Cell, researchers at the La Jolla Institute for Immunology identified viral protein pieces in SARS-CoV-2 that are already known to induce T cell immune responses. They then exposed the immune cells from 10 recovered COVID-19 patients to these protein pieces and measured the T cell immune responses.

All of the patients had helper T cells that recognized the main SARS-CoV-2 spike protein, and about 70% of them also had killer T cells that recognized the spike and membrane proteins. The main target of the 100-plus vaccines for COVID-19 in development is the antibody response to the spike protein, but this new understanding of the T cell response could provide new and potentially better targets.

The mission to make a vaccine against COVID-19 is possibly the most urgent public health problem in the world today. The encouraging results in both the similarities in immune response to SARS and SARS-CoV-2 and the identification of strong T cell responses in recovered COVID-19 patients promote further research in designing vaccines to induce T cell responses.

This story originally appeared on Massive Science, an editorial partner site that publishes science stories by scientists. Subscribe to their newsletter to get even more science sent straight to you.

Paige E. Pistono
Paige E. Pistono

Paige E. Pistono is a graduate student studying chemical biology at the University of California, Berkeley.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

From the journals: JLR
Journal News

From the journals: JLR

July 29, 2021

Reversing alcoholism’s effects on lipid droplets. How HDL cholesterol might reduce COVID-19 risk. Shining light on the cholesterol–GPCR relationship. Read about recent papers on these topics in the Journal of Lipid Research.

Starved to death: Can dietary methionine combat cancer?
Journal News

Starved to death: Can dietary methionine combat cancer?

July 27, 2021

Scientists draw a connection between this essential amino acid and cancer lipid metabolism.

I’m fully vaccinated but feel sick – should I get tested for COVID-19?
News

I’m fully vaccinated but feel sick – should I get tested for COVID-19?

July 25, 2021

It’s impossible to know whether a vaccinated person is fully protected or could still develop a mild case if exposed to the coronavirus.

Research roundup: Olympics edition
Observance

Research roundup: Olympics edition

July 23, 2021

A snapshot of science relevant to sports in the spotlight at the Tokyo Games.

A collaboration to study host immunity in plants and animals
Journal News

A collaboration to study host immunity in plants and animals

July 22, 2021

Characterizing chemokine function in plants may help researchers identify the protein’s role in humans.

Tour de flippase
Lipid News

Tour de flippase

July 20, 2021

These proteins — along with their siblings, floppases and scramblases — catalyze the flip-flop movement of phospholipid between the two leaflets of a membrane.