News

T cells could be the key in developing an effective COVID-19 vaccine

Our bodies have two main types of T cells. Together they can help us fend off this virus
Paige E. Pistono
By Paige E. Pistono
Aug. 1, 2020

Many have embraced antibodies and the possibility of immunity to COVID-19 as the key to reopening society and the economy. Serology testing — also known as antibody testing — can indicate whether someone is producing an immune response to the virus.

But we still do not know whether the presence of antibodies in recovered patients holds promise for long-lasting immunity. Insight from immunological studies on recovered SARS patients infected in 2003 showed that antibody levels wane after just a few years. A different immune response caused by T cells provides long term protection, even 11 years post-infection.

Based on this data, it is likely that T cell responses play a substantial role in developing protective immunity against SARS-CoV-2, the virus that causes COVID-19. There are two main types of T cells: helper and killer T cells. When they recognize a virus, helper T cells signal to activate other types of immune cells, while killer T cells release molecules that destroy the virus. 

In a new study published in the journal Cell, researchers at the La Jolla Institute for Immunology identified viral protein pieces in SARS-CoV-2 that are already known to induce T cell immune responses. They then exposed the immune cells from 10 recovered COVID-19 patients to these protein pieces and measured the T cell immune responses.

All of the patients had helper T cells that recognized the main SARS-CoV-2 spike protein, and about 70% of them also had killer T cells that recognized the spike and membrane proteins. The main target of the 100-plus vaccines for COVID-19 in development is the antibody response to the spike protein, but this new understanding of the T cell response could provide new and potentially better targets.

The mission to make a vaccine against COVID-19 is possibly the most urgent public health problem in the world today. The encouraging results in both the similarities in immune response to SARS and SARS-CoV-2 and the identification of strong T cell responses in recovered COVID-19 patients promote further research in designing vaccines to induce T cell responses.

This story originally appeared on Massive Science, an editorial partner site that publishes science stories by scientists. Subscribe to their newsletter to get even more science sent straight to you.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Paige E. Pistono
Paige E. Pistono

Paige E. Pistono is a graduate student studying chemical biology at the University of California, Berkeley.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Journal News

Method sharpens proteome-wide view of structural changes

Nov. 25, 2025

Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
Feature

Discoveries made possible by DNA

Nov. 24, 2025

The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.