Journal News

JLR: A fatty liver drug? Not so fast

Biology continues to surprise even experts
Laurel Oldach
Aug. 1, 2019

Sarah Spiegel knows a lot about sphingosine-1-phosphate, or S1P: She discovered the molecule in the 1990s. But she also knows there’s a lot still to learn. A study from Spiegel’s lab at Virginia Commonwealth University, published in the Journal of Lipid Research, highlights the complexities of signaling by this enigmatic lipid — and shows that targeting it may not fix fatty livers as easily as researchers had hoped.

A structural cartoon shows FTY720
A structural cartoon shows FTY720, or fingolimod, which resembles the lipid sphingosine and is used to treat multiple sclerosis.

Nonalcoholic fatty liver disease, or NAFLD, the leading cause of liver transplants, is rampant among people who consume a high-fat diet. The disorder starts when excess lipids build up in liver cells and eventually causes inflammation that does lasting harm to the organ. S1P is higher in the livers of people and mice with the disease. Given that link and the known role of S1P in inflammatory signaling, researchers hoped that blocking S1P signaling might slow NAFLD progression.

And there’s a drug that does exactly that. The prodrug FTY720/fingolimod, which is used to treat multiple sclerosis, is a sphingosine analogue that is phosphorylated in the body to an S1P mimic. In MS, it is thought to work by blocking S1P receptors on the surface of immune cells that otherwise would attack healthy tissues. Two years ago, researchers at the Mayo Clinic suggested that the drug could also reduce the symptoms of diet-induced fatty liver disease in mice.

“Nonalcoholic fatty liver diseases have a component of inflammation,” Spiegel said. “And FTY720 was known to be immunosuppressive.”

So the results of that first study made sense. But the dose used in the mice was quite high compared with the final plasma concentration of the drug in human patients. So, with postdoctoral fellow Timothy Rohrbach in charge, Spiegel’s lab tested the drug orally at about a third of the dose, a better match for treatment in the clinic.

The finding held up, but not for the reasons they had expected. In mice fed a fatty diet and sugar water, the researchers observed, treatment with FTY720 reduced lipid accumulation and liver size. But it didn’t do much to reduce the cytokine and chemokine signaling that are thought to push a fatty liver toward cirrhosis.

“We were surprised that inflammation was not the major component” of the drug’s effect, Spiegel said. “Yes, there were some effects on inflammation. But … the effect was mainly through suppressed lipid accumulation.”

In other words, the drug affected the first step in the disease, lipid buildup, without much changing inflammatory signals that usually result from that buildup.

By investigating lipid synthesis enzymes with a known connection to NAFLD in the treated mice, the team observed that fatty acid synthase was reduced while other enzymes did not seem to be affected. Of all the enzymes that make lipids, why fatty acid synthase alone?

Though FTY720 is expected to work through S1P receptors, Spiegel said, it may, like the sphingosine it mimics, have many targets. Her lab has shown previously that S1P can work in the nucleus as well. In this paper, they found preliminary evidence that the treated mice may regulate fatty acid synthase levels through histone modification.

“It’s a hypothesis at this point,” Spiegel said. “But I think it’s an intriguing connection. … In science, so many times you have a hypothesis, and the results take you to a different angle.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Related articles

From the journals: JLR
Preeti Karwal
From the journals: JLR
Sephra Rampersad
From the journals: JLR
Poornima Sankar
From the journals: JLR
Joseph Heath

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.