Member News

Cloud computing support accelerates COVID-19 vaccine improvements

University of British Columbia
By University of British Columbia
May 15, 2021

For the last 12 months, University of British Columbia biochemistry and molecular biology professor Leonard Foster and his team have been studying how SARS-CoV-2 — the virus responsible for COVID-19 — attacks the human body, in hopes of developing a more targeted vaccine with fewer side effects.

Foster is confident that this technology will accelerate the development of second-generation vaccine candidates.

Foster-Leonard-445x426.jpg
University of British Columbia
 Leonard Foster and his team at UBC have been studying how SARS-CoV-2 —
 the virus responsible for COVID-19 — attacks the human body, in hopes of
developing a more targeted vaccine with fewer side effects.

"There are many different approaches to developing a vaccine," Foster said. "The current COVID-19 vaccines use a brute-force approach that throws everything we know about the virus at our immune system and hopes that there is something in there that will cause an immune response. But by studying how the virus actually causes disease, we can apply a more targeted approach and develop a more effective vaccine with minimal side effects."

Foster has been studying how pathogens such as bacteria and viruses cause disease in host organisms for more than a decade. He specializes in a technique called mass spectrometry that is used to identify and analyze specific proteins in pathogens that allow them to cause disease. Once those proteins are identified, the researchers can use the information to develop a targeted vaccine.

Before the pandemic, Foster was known for his work applying mass spectrometry to understand how pathogens affect honey bees in order to guide selective breeding for disease-resistant behaviours in bees. Now he's applying the same technology to better understand the novel coronavirus.

"By studying how the virus actually causes disease, we can apply a more targeted approach and develop a more effective vaccine with minimal side effects."
 Leonard Foster

"The types of experiments we do generate huge datasets that need to be analyzed and interpreted computationally," Foster said. "If someone was to use a pen, paper and a calculator, it might take them beyond the life of the universe to come up with results. With our existing resources, we may be able to come up with something in five to 10 years. But thanks to our collaboration with Microsoft, we have accessed cloud computing power that results in us being able to see results within months."

The research is supported by a Mitacs project, and leverages Microsoft's donation of its Azure cloud platform credits to the university through UBC Advanced Research Computing. This enabled Foster's team to pivot quickly to analyze huge amounts of new and existing data using an application that runs on the powerful cloud platform.

"The cloud computing resources have impacted our research instrumentally and significantly sped up our vaccine development," Foster said. "We've been able to do some experiments that were not conceivable with any of the other resources that we had."

Foster's work is especially important as scientists don't yet know how long immunity against COVID-19 will last with the current available vaccines due to a lack of data.

"By understanding the mechanism of this virus, we'll be able to develop the next generation of prevention and treatment methods, as well as laying the groundwork for the basic scientific knowledge in preparation for the next pandemic-causing virus," he said.

University of British Columbia
University of British Columbia

This article was written by a staff member in the University of British Columbia Faculty of Medicine communications office.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A balancing game with implications for neurodegenerative disease
Journal News

A balancing game with implications for neurodegenerative disease

June 8, 2021

The relationship between two proteins, one essential to mitochondrial fission and the other found in Alzheimer’s tissue, might hold the key to how disease alters the fission–fusion balance.

Can people vaccinated against COVID-19 still spread the coronavirus?
News

Can people vaccinated against COVID-19 still spread the coronavirus?

June 6, 2021

Preliminary evidence seems to suggest that someone who’s vaccinated is less likely transmit the virus, but the proof is not yet ironclad.

Addgene expands its collection into antibodies
News

Addgene expands its collection into antibodies

June 4, 2021

The reagent repository Addgene, known for distribution and quality control of plasmids for open science, is expanding into recombinant antibodies and nanobodies in partnership with NeuroMab.

Study reveals experimental targets for lymphoma research
Journal News

Study reveals experimental targets for lymphoma research

June 3, 2021

An enzyme previously linked to lymphoma development may have more functions than previously thought.

Exploring underappreciated molecules and new cities
Interview

Exploring underappreciated molecules and new cities

June 2, 2021

Neurochemist Xianlin Han has been an associate editor for the Journal of Lipid Research since 2019.

Researchers target cell membrane for cancer research
Journal News

Researchers target cell membrane for cancer research

June 1, 2021

“The central idea is that if you alter the composition of the cell membrane, you can potentially alter the functionality of the proteins within the membrane and thus the disease overall.”