News

Scientists use bacteria to help plants grow in salty soil

Method could be scaled up to help farmers improve crop yield in areas with increased soil salinity
Nancy D. Lamontagne
By Nancy D. Lamontagne
May 01, 2020

A new study has shown that salt-tolerant bacteria can be used to enhance salt tolerance in various types of plants. The new approach could increase crop yield in areas dealing with increasing soil salinity.

Each year, about 2 million to 3 million hectares of irrigated farmland go out of production worldwide due to salinity problems, according to the U.S. Agency for International Development. Increased soil salinity not only reduces water uptake for crops but can often create a nutrient imbalance that decreases plant growth and yield.

Although salt levels in soil can increase naturally over time, especially in arid areas, farming practices also contribute. Irrigation water, especially recycled wastewater, contains salts that concentrate in the soil. Fertilizers also add salts to the soil.

KBG-Plants-890x592.jpg
Brent L. Nielsen/Brigham Young University
Kentucky bluegrass grown in salty soil and inoculated with a bacillus strain (right) showed 5.5 times the growth in fresh weight compared to uninoculated control in salt (left) and 8.4  times in dry weight compared to the control (middle) .

“Agricultural soil loss continues to rise, posing a very real threat to many important crops,” said research team leader Brent Nielsen, a professor at Brigham Young University. “Our method for enhancing the salt tolerance of plants could be scaled up to allow farmers to use more of their land and improve yield. This would create a more stable income for farmers and a more reliable food supply for consumers.”

Ashley Miller, a graduate student working in Nielsen’s lab, was scheduled to present this research at the American Society for Biochemistry and Molecular Biology annual meeting in San Diego in April. Though the meeting, to be held in conjunction with the 2020 Experimental Biology conference, was canceled in response to the COVID-19 outbreak, the research team's abstract was published in The FASEB Journal.

KBG-Roots-890x559.jpg
Brent L. Nielsen/Brigham Young University
Harvested Kentucky bluegrass plants with adherent soil on roots (left image) and with soil washed away (right image). In each panel are uninoculated plants grown in absence of salt (left), plants inoculated with strain B2 and grown in presence of salt (middle) and uninoculated plants grown in presence of salt (right).

In previous work, the researchers isolated salt-tolerant bacteria from plants growing in salty soils. They then immersed young alfalfa seedlings in liquid containing the individual salt-tolerant bacterial strains, a process called inoculation. The alfalfa inoculated with some of these salt-tolerant strains exhibited improved growth in high-salt conditions compared to plants not inoculated with bacteria. In the new work, they explored whether this salt tolerance could be transferred to other plants.

“We’ve found that salt tolerance can be transferred to many plant types,” said Miller. “Initial studies with Kentucky bluegrass have been particularly successful.”

The researchers found that Kentucky bluegrass grown in salty soil after inoculation with a Bacillus strain increased yield 8.4 times in dry weight compared with control plants grown in the same soil without the bacterial inoculation. The researchers continue to test whether salt tolerance can be conferred to additional plant varieties, with promising initial results.  They are also working to understand how the bacteria confer salt tolerance.

Nancy D. Lamontagne
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

From the journals: JLR
Journal News

From the journals: JLR

August 11, 2020

A hopping, scooting enzyme; the role of mycolic acid biosynthesis in TB; ceramide reduction to treat liver disease. Read about these recent papers in the Journal of Lipid Research.

Searching high and low for the origins of life
News

Searching high and low for the origins of life

August 09, 2020

Researchers think they’re getting warmer: They’ve created amino acids and primitive membranes by simulating conditions found at scalding vents on the ocean floor.

Why hydroxychloroquine and chloroquine don't block coronavirus infection of human lung cells
News

Why hydroxychloroquine and chloroquine don't block coronavirus infection of human lung cells

August 08, 2020

Scientists in Germany tested the malaria drugs on various cell types and found they can block coronavirus infection in kidney cells from the African green monkey but don’t inhibit the virus in human lung cells.

JLR’s new article format puts images at the forefront
Journal News

JLR’s new article format puts images at the forefront

August 04, 2020

“Images in Lipid Research” series aims to celebrate the images scientists create.

Psoriasis Awareness Month 2020
Health Observance

Psoriasis Awareness Month 2020

August 03, 2020

An estimated 125 million people worldwide are affected by psoriasis. Learn about the disease and recent research on it.

The color of COVID
News

The color of COVID

August 02, 2020

In a summer dominated by COVID-19 and protests against racial injustice, there are growing demands that drugmakers and investigators ensure that vaccine trials reflect the entire community.