Journal News

MCP: Keeping tabs on protein variants

Laurel Oldach
May 1, 2018

Perhaps you have seen a time-lapse video of a busy city sidewalk. As people come and go, they blur together into a crowd with no distinguishing features. You could count the number of people pushing strollers in each frame, but it might be hard to tell how long one parent has been circling the same block with a colicky baby.

As proteins are made and destroyed in a cell, they tend to blur together too. Many proteomics studies measure with precision the number of copies of each protein species but not how long each one lasts. In a new paper in the journal Molecular & Cellular Proteomics, researchers in Bernard Kuster’s lab at the Technical University of Munich report a new approach to determining the lifespan of a great many proteins, and their alternative isoforms, in large data sets.

“Plenty of research has demonstrated that cancer, neurodegenerative diseases, age-related diseases and even aging per se are associated with altered lifespans of single proteins or a global dysregulation of the cellular recycling machinery,” said lead author Jana Zecha. She compares a cell in which proteins are continuously made and destroyed to “a tiny protein production and recycling machinery.” With colleagues, Zecha set out to measure this factory’s output, determining the rates of production and destruction of many different proteins.

The researchers combined two techniques for telling samples apart by their mass: stable isotope labeling by amino acids in cell culture, or SILAC for short, and tandem mass tag labeling, or TMT. The primary SILAC label enabled a pulse-chase experiment, a way of measuring how much of a new amino acid is taken up after it is added to cells. By combining SILAC with TMT, the researchers could achieve high proteome coverage with high reproducibility and accurate counts of each protein. Then they looked for trends over time. For example, a protein’s rate of synthesis can be measured by how much of the new SILAC label appears over time in its spectrum, and degradation is measured by how much the old label disappears.

Other scientists previously had combined the SILAC and TMT methods, but this data set gave an unusually thorough look at protein lifetimes. The researchers found substantial variability among splice variants of proteins, which no one had yet measured in a data set of this size. Because two splice variants from the same gene have many peptides in common, a data set with many measurements at the peptide level was required.

The approach could offer a better way of understanding the basic biology of disease states with altered protein turnover. The researchers also are interested in modifications occurring after translation that may alter turnover rates.

“A proteomewide measurement of turnover rates of modified peptides is the next logical step for us,” Zecha said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.