Journal News

JBC: Researchers decipher how barbiturates work

Nathalie Gerassimov
April 1, 2017

Modern medicine would be unthinkable without the use of anesthesia during surgical procedures. In a recent paper in the Journal of Biological Chemistry that was selected as one of the Editors’ Picks, Marc Delarue of the Pasteur Institute in France and colleagues solved how a class of drugs called barbiturates function to induce anesthesia. “This work describes, for the first time, the three-dimensional structure by X-ray crystallography of barbiturates bound to the target receptor,” says Zaineb Fourati, one of the first authors on the paper. She adds, “Understanding the mechanism underlying anesthetics’ action is the first step toward the conception of better ones that are more specific and with less side effects.”

Researchers unveil barbiturates’ mechanism of action.IMAGE COURTESY OF MARC DELARUE

Barbiturates, a class of drugs derived from barbituric acid, made their debut in Germany in 1903. Their name is thought to be a fusion of “Barbara” and uric acid, a component of urine. Sources are divided on which female inspired the name, who could have been St. Barbara or someone less than a saint.

The first commercially available form of barbiturates was marketed as sleeping pills. Other medical applications of barbiturates soon emerged, including as anesthetics, sedatives and anticonvulsants, which led to their widespread use in the first half of the 20th century. However, the side effects of barbiturates led to their regulation and decreased popularity.

“Uncontrolled use of barbiturates could have hazardous consequences, from addiction to death by overdose,” says Fourati. “One concrete example is the presumably intentional death of the famous Marilyn Monroe due to a barbiturate overdose in the early 1960s.” Nevertheless, barbiturates remain essential in the treatment of epilepsy and as an intravenous general anesthetic.

Anesthetics act by decreasing the relay of information in the nervous system. Specifically, anesthetics affect several types of membrane-embedded ion channels. The principal targets of barbiturates are thought to be anionic and cationic pentameric ligand-gated ion channels, known as pLGICs. Although there is some evidence to show that barbiturates bind to the cylindrical pore of the ion channel, the exact nature of this interaction is unclear.

To understand this interaction better, Delarue and colleagues used the bacterial pH-gated receptor GLIC, which has high structural similarity to mammalian pLGICs. They first showed that the bacterial version of the channel behaved much like its eukaryotic counterpart by demonstrating that a specific barbiturate called pentobarbital can inhibit the electrical current of the bacterial GLIC channel.

Next, the investigators used three barbiturate derivatives — bromobarbital, thiopental and selenocyanobarbital — that were modified chemically such that they displayed an unusual electron scattering behavior to help assign bound ligands in the X-ray structure unambiguously. The investigators showed that all three barbiturate derivatives bound to the closed GLIC channel deep within the central pore, and they used computational simulations of the channel in open and desensitized states to support their findings further.

“This work partly reveals how barbiturates induce anesthesia,” says Fourati. “As these drugs act on the nervous system, it is very important to address the exact mechanism of their action, and the structure provides a direct proof of a molecule binding to a given site.”

She and her colleagues think that the knowledge gained in this study can help design a new generation of barbiturates not only for anesthesia but also for psychiatric and neurological disorders.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Nathalie Gerassimov

Nathalie Gerassimov is a postdoctoral researcher at the Carnegie Institution of Washington department of embryology.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Scientists use X-ray beams to determine role of zinc in development of ovarian follicles
Journal News

Scientists use X-ray beams to determine role of zinc in development of ovarian follicles

June 10, 2023

The study, conducted in part at Argonne’s Advanced Photon Source, could have implications for understanding human fertility.

Proteomic clues to oocyte development
Journal News

Proteomic clues to oocyte development

June 7, 2023

Researchers in Nanjing, China, have identified functions of critical proteins and pathways for female germ cell maturation.

Molecular basis for interaction between an essential protein complex and its regulator
News

Molecular basis for interaction between an essential protein complex and its regulator

June 4, 2023

Mutations in COPI are associated with multiple human diseases, including cancers and microcephalies.

UTSW researchers discover how food-poisoning bacteria infect the intestines
News

UTSW researchers discover how food-poisoning bacteria infect the intestines

June 3, 2023

Findings revealing efficient assembly of virulence machine could lead to development of treatments for diseases caused by gut pathogens.

'CoA as the central core'
Interview

'CoA as the central core'

June 2, 2023

ASBMB meeting on CoA and its derivatives will take place in Wisconsin in August and will feature sessions on metabolism, intracellular cross talk, proteostasis, autophagy and technological advances in mass spectrometry.

Study uncovers a unique, efficient method of copper delivery in cells
News

Study uncovers a unique, efficient method of copper delivery in cells

May 28, 2023

Discovery will help in treating Menkes disease, other copper deficiency disorders.