Journal News

From the journals: JBC

Ken Farabaugh
March 17, 2023

With sulfur, life finds a way. Specific anti-cancer antibodies. Exercise-induced signaling cross talk. Read about articles on these topics recently published in the Journal of Biological Chemistry.

Life finds a way

Sulfur is one of the essential elements required for life. Plants and microbes often take up sulfur from inorganic sulfates in the environment using the sulfate assimilation pathway, or SAP, which reduces sulfates into sulfides and then synthesizes organosulfurs. In yeast, the SAP culminates in Met15-catalyzed biosynthesis of the amino acid homocysteine. Since its discovery, researchers have considered the gene encoding Met15 to be an essential marker for yeast growth in media lacking organosulfurs, and strains lacking Met15 have been used as the cornerstone of many genetic and genomic studies.

Yeast petit mutant is compared with wild-type colonies on an agar plate infused with phloxine B.
Bojan Žunar/Wikimedia Commons
Yeast petit mutant is compared with wild-type colonies on an agar plate infused with phloxine B.

In their recent publication in the Journal of Biological Chemistry, S. Branden Van Oss, Saurin Bipin Parikh, Nelson Castilho Coehlo and colleagues at the University of Pittsburgh School of Medicine used structural and evolutionary modeling and genetic complementation experiments to show that the previously uncharacterized gene YLL058W encodes an alternative homocysteine synthase. They found that cells lacking Met15 still can assimilate inorganic sulfur and grow as long as excess sulfides are eliminated from the environment, indicating that Met15 is not essential for sulfur assimilation. In addition, the authors posit that the location of YLL058W near the unstable telomere region of the chromosome in all species that contain a homolog could indicate strong positive selective forces.

These results have implications for research on microbial and eukaryotic sulfur metabolism, including such aspects as the nutrient starvation stress response. This discovery also highlights how unknown variables can confound long-held assumptions.

Specific anti-cancer antibodies

The binding of programmed death-ligand 1, or PD-L1, to its receptor, programmed cell death protein 1, or PD-1, suppresses T cells and the immune system. Cancer cells frequently exploit this activity by overexpressing PD-L1 to evade immune activation; however, neutralizing monoclonal antibody therapy that targets PD-L1 has been effective in treating these cancers. Researchers recently have found that single-domain antibodies, such as nanobodies derived from camelids, may offer additional specificity and treatment options.

In a recent study in the Journal of Biological Chemistry, Tara Kang–Pettinger and colleagues at the University of Leicester used X-ray diffraction, NMR, AlphaFold and biolayer interferometry to solve a number of crystal structures of PD-L1 bound to nanobodies and characterize their binding interface. They found that the PD-1 binding surface on PD-L1 overlapped with another binding surface that recognizes CD80, a second receptor expressed on antigen-presenting cells that promotes a T cell anti-tumor response.

By comparing the binding sites of PD-1 and CD80, these researchers identified a binding region on PD-L1 specific for PD-1 and not for CD80 that could be bound by nanobodies. This binding permitted multiple simultaneous avenues to counteract PD-L1 overexpression and represents a step forward in the fight against cancer.

Exercise-induced signaling crosstalk

Physical inactivity and sedentary lifestyle are leading risk factors for obesity, Type 2 diabetes and heart diseases. Scientists know that the cytokine oncostatin M, or OSM, enhances insulin resistance in obesity through the phenotypic change of pro-inflammatory to anti-inflammatory macrophages when OSM is produced by adipocytes; however, researchers do not yet fully know what role OSM production plays in skeletal muscle after aerobic exercise.

Tadasuke Komori and colleagues at Wakayama Medical University in Japan reported in a recent article in the Journal of Biological Chemistry that OSM produced in the skeletal muscle after a single bout of aerobic exercise played a significant role in crosstalk between muscle and immune cells. Using OSM-deficient mice and direct intramuscular injection of OSM, they showed that OSM in the skeletal muscle was linked to the recruiting and accumulation of macrophages and neutrophils after exercise. Furthermore, they found that OSM induced the expression of a number of anti-inflammatory cytokines and markers.

These findings indicate that OSM is a novel myokine produced in muscle fibers and plays an important role in biological events such as the phenotypic determination of macrophages after aerobic exercise. This work could inform strategies for improving insulin sensitivity in muscle tissue.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ken Farabaugh

Ken Farabaugh is a former ASBMB science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.