Journal News

ANGPTL3: A promising therapeutic direction for cardiovascular disease

Gelareh (Abulwerdi)  Vinueza
March 17, 2020

Despite major advances in the treatment of cardiovascular disease, or CVD, with statins, antihypertensive and antithrombotic drugs, a residual number of patients with CVD remain untreated. These patients have a genetic disorder or extremely high levels of triglycerides (hypertriglyceridemia) that render them unresponsive to current therapies. To find new therapies, researchers are targeting circulating lipids and lipoproteins. A sedentary lifestyle and a diet high in sugar, fat and processed carbohydrates increase a person’s risk of developing CVD.

obese_rhesus_400x251.jpg
Courtesy of Peter Havel
Adult male rhesus macaques were fed an unrestricted diet and water along
with a flavored 15% fructose solution and then treated with fish oil
supplements to demonstrate the role of diet on ANGPTL3 protein levels.

Two main sugars in the human diet are glucose and fructose. Glucose, the major component of dietary carbohydrates, is a product of starch. Fructose is found mainly in soft drinks and other beverages, desserts and candies. Although similar in calories, glucose and fructose are metabolized differently. Glucose is absorbed rapidly by almost all cells in the body, and its levels remain balanced through insulin release. Fructose is metabolized mainly by the liver, and its levels are not regulated by insulin; increased fructose consumption increases circulating triglycerides, low-density lipoprotein cholesterol, and fat around organs and blood vessels. In the process of de novo lipogenesis, fructose in the liver metabolizes to lipids.

The liver expresses and secretes angiopoietinlike 3, or ANGPTL3, which plays a role in lipid clearance; therefore, scientists see this protein as a promising therapeutic target for developing lipid-lowering drugs that target formation of triglycerides. In a recent paper in the Journal of Lipid Research, Peter Havel and colleagues wrote that consumption of dietary fructose increases circulating levels of ANGPTL3 in rhesus macaques by 30% to 40%. Increased ANGPTL3 correlated with increased levels of plasma triglycerides.

In collaboration with Arrowhead Pharmaceuticals, the authors found that inhibiting hepatic ANGPTL3 expression using RNA interference technology resulted in reduced circulating ANGPTL3 and triglycerides in rhesus macaques. Supplementing the macaques’ diet with fish oil led to decreased levels of ANGPTL3.

“These are the first studies to demonstrate the effect of diet (fructose and omega-3 fatty acids in fish oil) on ANGPTL3,” Havel said, “and suggest that ANGPTL3 is a promising target for management of hypertriglyceridemia.”

The role of dietary sugars in metabolism is a focus of Havel’s lab at the University of California, and the researchers have developed the rhesus macaque model of metabolic syndrome “in which consuming sugar-sweetened beverages accelerates the development of insulin resistance and dysregulation of lipid metabolism,” he said.

For patients with CVD who can’t benefit from current treatments, this research opens exciting possibilities for new therapies. “Suppression of ANGPTL3 production may be an important mechanism,” Havel said. “Fish oil supplements, when consumed in adequate amounts, lower plasma triglycerides and reduces CVD risk.”

Gelareh (Abulwerdi)  Vinueza

Gelareh (Abulwerdi) Vinueza graduated with her Ph.D. from the molecular medicine program at the University of Maryland, Baltimore. She is currently a policy fellow at the Food and Drug Administration. She has been an ASBMB volunteer writer since 2018 and is passionate about science communication and science policy. Outside of work, she enjoys photography, hiking and cooking.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Your genetics influence how resilient you are to cold temperatures – new research
News

Your genetics influence how resilient you are to cold temperatures – new research

March 06, 2021

Research suggests that if you’re deficient in a certain muscle protein, your body can maintain a higher core temperature and you shiver less when exposed to cold.

Understanding cellular function to understand life
ASBMB Annual Meeting

Understanding cellular function to understand life

March 05, 2021

Geoffrey Hesketh will speak during the Molecular & Cellular Proteomics early career researcher session on proximity-dependent biotinylation at the 2021 ASBMB Annual Meeting.

Decoding organ communication systems
ASBMB Annual Meeting

Decoding organ communication systems

March 04, 2021

Ilia Droujinine will speak during the Molecular & Cellular Proteomics presentation on biological insights revealed by proteomics at the 2021 ASBMB Annual Meeting.

Branon works to break barriers in science and higher education
ASBMB Annual Meeting

Branon works to break barriers in science and higher education

March 03, 2021

Tess Branon will speak on proximity-dependent biotinylation during the Molecular & Cellular Proteomics early-career researcher session at the 2021 ASBMB Annual Meeting.

Brain Injury Awareness Month 2021
Health Observance

Brain Injury Awareness Month 2021

March 01, 2021

In the U.S., about 2.8 million people sustain a traumatic brain injury annually. Learn about recent research on TBI-related dementia, dysfunctional mitochondria and other work powering the march toward better therapies.

The evolution of proteins from mysteries to medicines
Essay

The evolution of proteins from mysteries to medicines

February 27, 2021

An essay in observance of National Protein Day.