News

Institute launches a new AI initiative to power biological research

Rachel Scanza
By Rachel Scanza
Dec. 14, 2024

With artificial intelligence (AI) poised to greatly accelerate the pace for novel discoveries in foundational biological research, the Stowers Institute launched the Office of Scientific Leadership AI Initiative, a new program designed to advance capabilities in machine learning and AI for addressing critical biological questions. Investigator Julia Zeitlinger, Ph.D., has been appointed to lead this effort and leverage cutting-edge computational techniques to accelerate scientific discoveries and drive innovation in biological research.

From left to right: Julia Zeitlinger, Ph.D., Jay Unruh, Ph.D., and Evelyn Travnik
From left to right: Julia Zeitlinger, Ph.D., Jay Unruh, Ph.D., and Evelyn Travnik

Zeitlinger will work to develop and execute a long-term strategy to build world-class AI-powered computational expertise. She will head the steering committee that, together with Chief Information Officer Evelyn Travnik and Director of Scientific Data Jay Unruh, Ph.D., prioritizes and implements computational efforts across the organization. She also advises the Stowers Fellows program and the Graduate School to attract, support, and maintain computational talent at the Institute.

“Biology is incredibly complex, and AI is an excellent way to detect the underlying patterns and rules. A great example is the information encoded in our DNA, how it us used to create gene products like proteins, and how those gene products function to support life,” said Zeitlinger. “I am passionate about leading the Institute’s new initiative to promote AI in our scientific research. It is both an exciting challenge and a huge opportunity.”

A fundamental biological quest is to understand how variations within our genetic code and the molecules arising from it not only make us unique but can also underlie disease or disease susceptibility. AI’s predictive capabilities can guide targeted experimental approaches to identify how these variations impact gene regulation and protein function, key factors governing development, health, and disease.

“Many of our investigators including Zeitlinger and our Technology Center scientists are engaged in the pursuit of understanding how sequences within our DNA genetic blueprint control gene activity and how the shape of proteins affects their function,” said Stowers Scientific Director Kausik Si, Ph.D.

“Leveraging the power of AI will enable researchers Institute-wide to answer questions that remain some of the biggest biological mysteries for the benefit of all,” said Stowers President and Chief Scientific Officer Alejandro Sánchez Alvarado, Ph.D.

This article is republished from Stowers News. Read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Rachel Scanza
Rachel Scanza

Rachel Scanza is a senior science writer at the Stowers Institute for Medical Research, where she translates complex science for a broad audience to author press releases, news stories, and features. Scanza earned a Ph.D. in atmospheric science from Cornell University and continued to investigate atmospheric aerosols on climate as a postdoctoral fellow at Pacific Northwest National Laboratory.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Early lipid changes drive retinal degeneration in Zellweger spectrum disorder
Journal News

Early lipid changes drive retinal degeneration in Zellweger spectrum disorder

Sept. 16, 2025

Lipid profiling in a rare disease mouse model reveals metabolic shifts and inflammation in the retinal pigment epithelium — offering promising biomarker leads to combat blindness.

How sugars shape Marfan syndrome
Journal News

How sugars shape Marfan syndrome

Sept. 10, 2025

Research from the University of Georgia shows that Marfan syndrome–associated fibrillin-1 mutations disrupt O glycosylation, revealing unexpected changes that may alter the protein's function in the extracellular matrix.

What’s in a diagnosis?
Essay

What’s in a diagnosis?

Sept. 4, 2025

When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Annual Meeting

Peer through a window to the future of science

Sept. 3, 2025

Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.