News

Assessing the risk of excess folic acid intake

Ana Maria Rodriguez
By Ana Maria Rodriguez
March 18, 2023

It is well established that folic acid supplementation can significantly reduce the risk of birth defects, including neural tube defects like spina bifida, the most common birth defect of the central nervous system and the second most common of all structural birth defects. More than 80 nations, including the U.S. 25 years ago, have established mandated folic acid food fortification programs, which have been successful.

“However, there is a lack of research on whether excessive folic acid intake has the potential to harm human beings,” said co-corresponding author, Dr. Richard H. Finnell, William T. Butler, M.D., Distinguished Chair Professor in the Center for Precision Environmental Health and the departments of molecular and cellular biologymolecular and human genetics and medicine at Baylor College of Medicine.

There are reports of adverse effects associated with high folate intake in humans. In this study published in the journal Cell Discovery, Finnell and his colleagues investigated in an animal model the potential effect of folic acid supplementation on DNA mutation rates and other genetic modifications such as whole genome methylation, which can change how much of any given gene product gets expressed in cells.

The animals received one of three folic-acid-supplemented diets: folic acid low, folic acid control and folic acid high. “Compared to the mutation frequency of the folic acid-control diet group, that of the folic acid-low diet group increased two-fold and the folic acid-high diet group increased 1.8 fold,” Finnell said.

The researchers found that DNA repair genes were significantly hypermethylated in the folic acid-high diet, suggesting that excess folic acid supplementation may affect the mutation rate by reducing the expression of DNA repair genes and consequently impairing DNA repair activity. Understanding these mechanisms requires further investigation.

“The effects of high- or low-folic acid diets should be confirmed in human population in future studies,” Finnell said. “Our data supports that folic acid supplementation should be restricted to an ideal benefit range. What we have here is a “Goldilocks Effect”: Too little or too much of a good thing (folic acid) may not be such a good thing.”

This article first appeared on the Baylor College of Medicine news site. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ana Maria Rodriguez
Ana Maria Rodriguez

Ana Maria Rodriguez is lead science writer at Baylor College of Medicine. She is the editor of From the Labs, Baylor’s science blog spotlighting the newest and most interesting research information from the bench at the College, and one of its main contributors.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Journal News

Zebrafish model links low omega-3s to eye abnormalities

Sept. 24, 2025

Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Observance

Top reviewers at ASBMB journals

Sept. 19, 2025

Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
Essay

Teaching AI to listen

Sept. 18, 2025

A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.