News

Anatomy of a molecule:
What makes remdesivir unique?

Experts weigh in on the chemistry of the potential SARS-nCoV-2 antiviral
Laurel Oldach
March 17, 2020

The World Health Organization in late January convened experts to discuss experimental therapeutics for patients with the emerging coronavirus with no name, no vaccine and no treatment. The panel reported that “among the different therapeutic options, remdesivir was considered the most promising candidate.”

Within weeks, a clinical trial of the compound was underway in China. Results are expected in April; in the meantime, the outbreak of SARS-nCoV-2, the virus that causes COVID-19, has become a global pandemic.

Remdesivir is a nucleoside analog, one of the oldest classes of antiviral drugs. It works by blocking the RNA polymerase that coronaviruses and related RNA viruses need to replicate their genomes and proliferate in the host body.

The molecule originally was synthesized as part of a screen for inhibitors of the hepatitis C virus RNA polymerase. Its inventors at Gilead Sciences decided to move forward with a different nucleoside analog compound to treat hepatitis C. But RNA-dependent RNA polymerases are conserved between many viruses. Experiments in vitro, in cell culture and in animal models have shown that remdesivir has broad-spectrum activity against RNA viruses, including filoviruses (like the one that causes Ebola) and coronaviruses.

Remdesivir resembles the RNA base adenosine, shown here as a monophosphate.

AMP.jpg

The compound and ATP have some important differences, but some features are very similar. ASBMB Today spoke to medicinal chemist Katherine Seley–Radtke at the University of Maryland, Baltimore County, and structural virologist Craig Cameron at the University of North Carolina, Chapel Hill about what makes the molecule interesting. Click on a feature marked in blue to read their remarks.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Heart benefits of walnuts likely come from gut
Annual Meeting

Heart benefits of walnuts likely come from gut

March 25, 2023

Gut microbe gene expression provides new insights into how eating walnuts may lower cardiovascular risk.

The researcher and the roaches
Feature

The researcher and the roaches

March 25, 2023

Jingwei Li, an undergraduate at Case Western Reserve University, has been studying cockroaches to learn about Parkinson’s disease. He'll present his work at #DiscoverBMB.

Bacterial protein reverses infertility by lowering cholesterol
Journal News

Bacterial protein reverses infertility by lowering cholesterol

March 24, 2023

Researchers reverse infertility in preclinical models by reducing HDL cholesterol with a bacterial virulence protein.

Offensive strategies in the lab
Feature

Offensive strategies in the lab

March 24, 2023

A love of football inspired this Iowa State undergrad’s food preservation research.

Lighting the way to undergraduate research
Annual Meeting

Lighting the way to undergraduate research

March 23, 2023

A team at Albion College is working on light-activated pharmaceuticals to target cancer and minimize damage to healthy cells.

Exploring marine science at the cellular level
Annual Meeting

Exploring marine science at the cellular level

March 21, 2023

Karlie Tischendorf, a senior at Purdue University, is scheduled to present her research on stingray venom at Discover BMB.