News

Researchers identify new way to attack herpesviruses

Kate O'Rourke
By Kate O'Rourke
Jan. 30, 2022

new study published this week in the journal mBio has opened the door to a new approach to attacking herpesviruses. The study demonstrated that targeting two metal ion-dependent enzymes of human herpesviruses with two compounds can inhibit the replication of the virus. The finding provides new opportunities to developing agents against herpesviruses. 

“A lot of people know the herpes simplex viruses, but there is actually a family of 9 different herpesviruses including cytomegalovirus (CMV) which causes a lot of problems for immunocompromised people, folks getting transplants and chemotherapy patients for example. We need better therapeutic agents that can be used in these very vulnerable populations,” said co-author of the study Dennis Wright, professor of medicinal chemistry in the School of Pharmacy at the University of Connecticut. “Right now, the therapeutic agents that are out there aren’t terribly effective in terms of being able to treat all the viruses, and many of them have a significant dose-limiting toxicities and associated side effects."  

Ideally, said Wright, there would be one drug that would inhibit the reactivation of all nine herpesviruses. Co-study author Sandra K. Weller, a distinguished professor of molecular biology and biophysics in the School of Medicine at the University of Connecticut, identified targets that would allow just that. She identified herpesvirus enzymes that require two magnesiums for the herpesvirus to replicate.

“The majority of drug discovery efforts against herpesviruses has focused on nucleoside analogs that target viral DNA polymerases. We are pursuing a strategy based on targeting two-metal-ion-dependent viral enzymes,” said Weller. 

The researchers tested the ability of a panel of compounds to inhibit specific two metal ion-dependent enzymes as well as herpesvirus replication. The panel of compounds tested included HIV integrase inhibitors, the anti-influenza agent baloxavir, 3 natural products previously shown to exhibit anti-herpes simplex virus activity, and two 8-hydroxyquinolones, AK-157 and AK-166. 

While HIV integrase inhibitors have been reported to inhibit replication of herpesviruses, the researchers found the integrase inhibitors exhibited weak overall anti-HSV-1 activity.  However, the researchers found that 8-hydroxyquinolones displayed strong antiviral activity against both HSV-1 and CMV and could inhibit one or more of the two metal ion dependent enzymes.  This opens up the possibility of potentially developing dual targeting agents against herpesviruses.  

This article was adapted from a press release by the American Society for Microbiology. It has been edited for style.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Kate O'Rourke
Kate O'Rourke

Kate O'Rourke is a freelance science writer living in Portland, Maine. She has been writing about science and human and animal health for over 20 years.
 

Related articles

Finding a way to combat long COVID
Marissa Locke Rottinghaus
Structure of the key protein for an HCV vaccine
Lisa Eshun–Wilson & Alba Torrents de la Peña

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.

Pathogen-derived enzyme engineered for antibiotic design
Journal News

Pathogen-derived enzyme engineered for antibiotic design

Aug. 6, 2025

Engineered variants of a bacterial enzyme developed at the University at Buffalo accept larger substrates, paving the way for new acinetobactin-based antimicrobials. Read more about this recent JBC paper.