Journal News

Do sperm offer the uterus
a secret handshake?

Researchers discover endometrial receptor that can recognize surface molecule
Laurel Oldach
Jan. 22, 2020

Why does it take 200 million sperm to fertilize a single egg?

One reason: When sperm arrive in the uterus, they are bombarded by the immune system. Perhaps, molecular anthropologist Pascal Gagneux says, many are needed so some will survive. On the other hand, the female may benefit by culling so many sperm.

“I’m a lonely zoologist in a medical school,” Gagneux said. “My elevator spiel is that all of life is one big compromise. (For an egg), being too easy to fertilize is bad; being too difficult to fertilize is also bad.”

Gagneux’s lab at the University of California, San Diego, has discovered the makings of something that might be compared to a secret handshake between sperm and the cells lining the uterus in mice and, perhaps, humans. Uterine cells, they report in the Journal of Biological Chemistry, express a receptor that recognizes a glycan molecule on the surface of sperm cells. This interaction might adjust the female’s immune response and help sperm make it through the leukocytic reaction. 

JBC-news-sperm-leukocytic-resposne-(1).jpg
Tecle et al. JBC 2019
An artistic rendering (not to scale) shows how the “secret handshake” between sperm and endometrial cells takes place. The surface of sperm is coated in glycans, branched structures that are rich in sialic acid. These can be recognized by sialic acid binding receptors, called siglecs, found on the surface of endometrial cells.

The leukocytic reaction is not well understood. What we do know, Gagneux said, is that “after crossing the cervix, millions of sperm — a U.S. population worth of sperm — that arrive in the uterus are faced by a barrage of macrophages and neutrophils.” 

This attack by the innate immune system kills most of the sperm cells in semen, winnowing hundreds of millions down to just a few hundred that enter the fallopian tubes. The defensive response may help prevent polyspermy, when an egg is fertilized by more than one sperm and cannot develop.

Sperm are coated in sialic acid–rich glycans, and the innate immune system uses sialic acid to differentiate human cells from invaders, so Gagneux and his lab expected that the glycan might interact with innate immune cells called neutrophils. But human neutrophils they tested were activated to a similar degree by sperm with and without sialic acid.

Meanwhile, the team noticed sialic acid–binding receptors called siglecs on endometrial cells. In solution, these endometrial receptors can bind to whole sperm. According to Gagneux, the binding interaction might help the sperm run the gantlet of the leukocytic response — for example, by dampening the immune response. Alternatively, it may be a way for uterine cells to weed out faulty sperm. In the immune system, siglecs help cells to recognize sialic acid molecules as markers of the body’s own cells, and in that context they can turn inflammation either up or down.

“It’s somewhat embarrassing how little we can say about what this (interaction) means,” Gagneux said. To understand its physiological significance, researchers first must look for direct interaction between sperm and intact uterine tissue — this paper looked at only sperm interacting with purified proteins and isolated cells. 

It’s humbling to work in such a poorly understood area, Gagneux said. Reproduction “is a very, very delicate tug-of-war at many levels. The fact that there is (also) this immune game going on is completely fascinating.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Feature

Before we’ve lost what we can’t rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader–Willi syndrome.

Using 'nature’s mistakes' as a window into Lafora disease
Feature

Using 'nature’s mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer’s code through functional connections
News

Cracking cancer’s code through functional connections

July 2, 2025

A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17–21 in Cambridge, Massachusetts.