Award

Yang a 'highly accomplished crystallographer'

NIH section chief wins ASBMB's Mildred Cohn Award
Courtney Chandler
April 1, 2017

Wei Yang, an investigator and section chief of structure and mechanism at the National Institutes of Health, has won the Mildred Cohn Award in Biological Chemistry from the American Society for Biochemistry and Molecular Biology. The Cohn award honors the first president of the ASBMB and recognizes scientists who have advanced our understanding of biological chemistry through physical methodologies. Yang received the award in recognition of her work on elucidating the structure and function of proteins involved in genome maintenance.

Wei Yang
NIH

“I am thrilled and deeply humbled to receive the Mildred Cohn Award in Biological Chemistry. Dr. Cohn, an extraordinary scientist, mentor and former ASBMB president, was a pioneer and both a role model and inspiration to me and my generation of women scientists.”

— WEI YANG

Philip Hanawalt of Stanford University wrote in support of Yang’s nomination, saying he could “think of no person more deserving than Wei Yang for this recognition of a woman who has made substantial advances in understanding biological chemistry using innovative physical approaches.”

Much of Yang’s work has focused on structural characterization of proteins involved in DNA mismatch repair and translesion DNA synthesis. She has solved the crystal structures of bacterial MutL, MutS, MutH and DNA helicase II proteins in complex with their DNA substrates. This work, plus activity assays, serves as the foundation for understanding how the mismatch repair system recognizes and removes mismatched DNA to ensure high fidelity during DNA replication.

In collaboration with Roger Woodgate of the NIH, Yang’s team determined the first crystal structure of a Y-family DNA polymerase complexed with a DNA lesion and engaging in bypass synthesis. Subsequently, in collaboration with Fumio Hanaoka in Japan, who discovered human Y-family DNA polymerase eta, or Pol eta, her team elucidated the molecular mechanism Pol eta uses to bypass ultraviolet-induced DNA lesions and avoid mutations and malignancy.

“She moves smoothly from one field to another,” said Hanawalt in his letter, “always providing the insights that are derived from her understanding of fundamental crystallographic approaches.”

In more recent work, Yang and her team used time-resolved crystallographic techniques to study the mechanism of DNA synthesis. This allowed them to construct the first detailed picture of phosphodiester bond formation by a human polymerase, which included a description of the transient recruitment of a magnesium ion and interactions needed for nucleotide addition.

“Dr. Yang is both an outstanding crystallographer and an outstanding biochemist,” said Martin Gellert of the NIH in his letter of support for Yang’s nomination. “This combination of talents has enabled her to obtain deep insights into several important biological systems in the general field of DNA repair and recombination.”

Yang earned her Ph.D. from Columbia University in 1991. As a graduate student in Wayne Hendrickson’s laboratory, Yang, along with Robert Crouch of the NIH, determined the first crystal structure of RNase H bound to its RNA/DNA substrate, thereby establishing how this protein removes the RNA primers made during DNA replication. She characterized the structure and function of the UvrD helicase. This work revealed a distinct role for UvrD helicase in mismatch repair in addition to its traditional role in repairing DNA lesions produced by ultraviolet light.

Yang went on to postdoctoral fellowships at both Columbia University and Yale University. In 1995, she was recruited to the NIH as a tenure-track investigator at the National Institute of Diabetes and Digestive and Kidney Diseases.

Yang is a member of both the National Academy of Sciences and the American Academy of Arts and Sciences. She has received the Dorothy Crowfoot Hodgkin Award from the Protein Society and the Bea Singer Young Investigator Award from the Gordon Research Conference on Mutagenesis and Carcinogenesis.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Courtney Chandler

Courtney Chandler is a careers columnist for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Bertrand Coste and the pressure receptor
Feature

Bertrand Coste and the pressure receptor

Jan. 27, 2022

“It was almost one of those ‘I can’t believe you’re doing this’ kind of projects.” The search for a protein that senses pressure. Part of a series on the 2021 Nobel Prize in physiology or medicine.

David McKemy and the cold receptor
Feature

David McKemy and the cold receptor

Jan. 26, 2022

“This is the nature of doing bench work. We all go through those periods when stuff’s not working.” How persistence unlocked the cold-sensitive receptor TRPM8. Part of a series on the 2021 Nobel Prize in physiology or medicine.

How the Julius lab found that an ion channel senses heat
Feature

How the Julius lab found that an ion channel senses heat

Jan. 25, 2022

“Holy cow, this is why hot peppers are hot.” How researchers established that the capsaicin receptor also recognizes heat. Part of a series on the 2021 Nobel Prize in physiology or medicine.

Partch wins NAS Award in Molecular Biology
Member News

Partch wins NAS Award in Molecular Biology

Jan. 24, 2022

It recognizes a “recent notable discovery in molecular biology by a young scientist." Partch studies the molecular mechanisms of circadian signaling in mammalian and bacterial cells.

Michael Caterina and the capsaicin receptor
Feature

Michael Caterina and the capsaicin receptor

Jan. 24, 2022

Being scooped left a postdoc with a toolkit for hunting receptors — and a daring new project. First in a series on the 2021 Nobel Prize in physiology or medicine.

In memoriam: Frank F. Davis
In Memoriam

In memoriam: Frank F. Davis

Jan. 24, 2022

The biochemist who 50 years ago came up with a drug delivery system now used in mRNA COVID-19 vaccines, Davis died at the age of 100.