Annual Meeting

Exploring cell surface changes in cancer

Jim Wells will speak during the Molecular & Cellular Proteomics session at Discover BMB
Chloe Kirk
Feb. 28, 2023

Jim Wells’ research has spanned biotech, academia and founding a company. He’s determined that whatever he does, it doesn’t feel like “punching the clock.”

Focusing on how cell surfaces change in response to health and disease, Wells uses his seminal work in protein engineering to explore drug development targets through protein mutagenesis.

Jim Wells
Jim Wells

“It’s important to me that my work ticks two critical boxes,” he said. “One is that this lab would be a great place to grow as a scientist, and the second is the work has to be fun.”

Raised in the San Francisco Bay Area, where he was inspired by enzymology researchers such as Daniel Koshland, Wells went to Washington State University for his Ph.D. to work under Ralph Yount who, he said, “taught me most of the things I know today, especially biochemistry and protein modification.”

Eighteen months into his postdoc at Stanford, “I realized I really enjoyed gene structure and function, and this amazing new technology called site-directed mutagenesis was just published,” Wells said. “I thought, ‘wow, this could be really amazing to apply to proteins.’”

Recombinant DNA studies were at such an early stage that Wells knew he wasn’t going to find an academic job to support this research. That’s when a friend introduced him to a company at the forefront of applying recombinant DNA for commercial use: Genentech.

At Genentech, Wells and his group engineered the first gain-of-function enzymes, growth factors and antibodies by site-directed mutagenesis. “I thought I’d be there three years to learn the technologies,” he said, “and ended up staying 16 years.”

Wells went on to start his own company, Sunesis Pharmaceuticals, before he moved in 2005 to the University of California, San Francisco, where he is a professor of chemistry.

Developing antibodies from cancer markers

Jim Wells’ work focuses on changing cell surface proteomics in changing cell health and diseases, most notably in cancers. He breaks his research into four projects: What’s Up, What’s Cut, All in the Neighborhood and Cell Portal.

The What’s Up project is centered around new blooms of proteins that appear specifically in cancerous cells, and the lab has recently published a new tool to label these blooms of proteins.

What’s Cut looks at the What’s Up project with another level of resolution. Here, the team looks at posttranslational modifications, such as glycosylation or proteolysis, tagging those proteins to find out what targets are being modified, and then makes antibodies that can attack those targets; they published recently on targeting RAS-driven cancers.

The All in the Neighborhood project switches gears and studies how protein complexes change on a cell’s surface during cancer.

The Cell Portal project examines how entire peptides change between normal and cancerous cells to engineer antibodies targeting cancerous peptide complexes, as the team recently reported in the Journal of the American Cancer Society.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

McKnight wins Lasker Award
Member News

McKnight wins Lasker Award

Jan. 12, 2026

He was honored at a gala in September and received a $250,000 honorarium.

Building a stronger future for research funding
Interview

Building a stronger future for research funding

Jan. 9, 2026

Hear from Eric Gascho of the Coalition for Health Funding about federal public health investments, the value of collaboration and how scientists can help shape the future of research funding.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

2026 voter guide
Society News

2026 voter guide

Jan. 6, 2026

Learn about the candidates running for Treasurer-elect, Councilor and Nominating Committee.

Meet the editor-in-chief of ASBMB’s new journal, IBMB
Profile

Meet the editor-in-chief of ASBMB’s new journal, IBMB

Jan. 5, 2026

Benjamin Garcia will head ASBMB’s new journal, Insights in Biochemistry and Molecular Biology, which will launch in early 2026.