Award

Stanford's Herschlag named William C. Rose award winner

Angela Hopp Nick Zagorski
By Angela Hopp and Nick Zagorski
January 25, 2010

HerschlagDaniel Herschlag, professor of biochemistry, chemistry and chemical engineering at Stanford University, has been awarded the 2010 American Society for Biochemistry and Molecular Biology William C. Rose Award in recognition of his outstanding contributions to biochemical and molecular biological research and a demonstrated commitment to the training of younger scientists.

Herschlag will present an award lecture titled “How Enzymes Work” at 8:30 a.m. Tuesday, April 27, at the 2010 annual meeting in Anaheim, Calif.

Integrating concepts and techniques from physics, chemistry and biology, Herschlag and his lab team seek to unlock the fundamental behaviors of RNA and proteins and, in turn, how these behaviors determine and affect biological processes. Herschlag is perhaps most famous for his groundbreaking research in RNA structure, folding and catalysis, particularly his discoveries concerning the mechanisms and thermodynamics of group I and hammerhead ribozymes.

“Herschlag has set the standard for excellence in this field,” notes colleague Carol A. Fierke, chairwoman of the University of Michigan’s department of chemistry. “His studies using single-atom substitution and kinetic analysis to identify metal binding sites in ribozymes are a tour de force. Additionally, [he] provided the first direct demonstration of the role of binding interactions in chemical catalysis in ribozymes; these studies elegantly demonstrated the role of binding energy in stabilizing both ground-state and transition-state interactions.”

Of course, as Fierke and others will point out, ribozymes represent just a portion of Herschlag’s superb body of research. He is also one of the foremost experts on the mechanisms of both naturally occurring and enzyme-catalyzed phosphoryl transfer reactions and a leader in advancing research into RNA chaperones. He has provided tremendous insight into the general nature and evolution of enzyme catalysis.

In this latter area, Herschlag is well known for identifying the implications of a property he termed “catalytic promiscuity”— in which proteins in the same superfamily often display low levels of activity toward reactions catalyzed by other members within the superfamily— for the evolution and design of new enzymes.

In addition to his scientific contributions in the fields of RNA, enzymes and RNA enzymes, Herschlag also has demonstrated an equal level of commitment to training younger scientists. Says Rick Russell, associate professor of chemistry and biochemistry at the University of Texas and former postdoctoral fellow in Herschlag’s lab, “Dan has been committed to doing everything necessary to mentor his group members at the highest possible level in all aspects of training, from designing and interpreting the experiments to preparing the presentation.”

“I am continually amazed at how willing Dan is to donate his time to provide guidance, and I am amazed at how effective his guidance is across this wide range of scientific areas,” Russell continued. “I know of no other scientist who is so willing and eager to assist students in this way.”

Herschlag received his undergraduate degree in biochemistry from the State University of New York at Binghamton in 1982, during which time he also co-edited the campus literary magazine.

After a year of conducting research into the enzymology of glycopeptide synthesis with John Gander at the University of Minnesota (and learning a little quantum mechanics on the side), Herschlag began his graduate studies at Brandeis University. There, he began looking into phosphoryl transfer reactions under the direction of William Jencks.

After receiving his doctoral degree in 1988, Herschlag did postdoctoral research at the University of Colorado at Boulder under Thomas Cech, where he got his first taste of the recently discovered RNA enzymes. He then went on to join the Stanford University biochemistry department in 1993, where he has remained ever since.

Angela Hopp

Angela Hopp is executive editor of ASBMB Today and communications director for the ASBMB.

Nick Zagorski
Nick Zagorski

Nick Zagorski is a former ASBMB science writer.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in People

People highlights or most popular articles

'Every experiment and every breakthrough matters'
Health Observance

'Every experiment and every breakthrough matters'

February 26, 2021

An interview with NYMC dean Marina K. Holz, who studies a rare disease that affects women of childbearing age.

Connecting chemistry with education
Jobs

Connecting chemistry with education

February 26, 2021

Meet Christiane Stachl, director of education, outreach and diversity at Center for Genetically Encoded Materials at UC Berkeley.

Raising awareness and funding for Pompe disease
Health Observance

Raising awareness and funding for Pompe disease

February 25, 2021

Father-turned-advocate has founded multiple organizations to support families and search for better therapies for people with rare lysosomal storage disorder.

Tributes to Barbara Gordon, ASBMB executive director, on her retirement
Stroopwafels

Tributes to Barbara Gordon, ASBMB executive director, on her retirement

February 24, 2021

Society members and former staff share their appreciation and memories of Gordon who worked at the American Society for Biochemistry and Molecular Biology for almost 50 years.

Booker edits new journal; Bumpus featured in virtual museum
Member News

Booker edits new journal; Bumpus featured in virtual museum

February 22, 2021

Awards, promotions, milestones and more. Find out what's going on in the lives of ASBMB members.

Remembering Kanfer and Barry
In Memoriam

Remembering Kanfer and Barry

February 22, 2021

Julian Kanfer was one of the first researchers to study the link between amyloid ß protein and Alzheimer’s disease. Bridgette Barry focused on how the dynamic protein matrix facilitates enzyme-based catalysis.