Essay

Scoundrels, saints and the fiction of individual genius

In the shadows of every celebrated scientist, there are other contributors who may be more deserving of our adulation
Joshua Roebke
By Joshua Roebke
Nov. 7, 2020

For the past several years, I have taught a seminar called The Literature of Science to a dozen or so honors students at the University of Texas. These clever undergraduates are all majoring in the hard sciences, and most of them already have some experience doing research. We read stories, both fiction and nonfiction, and discuss how authors communicate science and depict scientists, whether real or imagined. We are trying to understand, beyond our particular experiences, what science is and what scientists do.

Watson-James-445x459.jpg
Cold Spring Harbor Laboratory/Wikimedia Commons
James Watson was a co-winner with Francis Crick and Maurice Wilkins of the 1962 Nobel Prize in Physiology or Medicine.

During a recent meeting, my students and I discussed what many people consider to be the greatest memoir ever written by a Nobel laureate: “The Double Helix,” by James Watson. During the early 1950s, Watson illuminated the structure of DNA with Francis Crick, thanks to the light of an unpublished photograph taken by Rosalind Franklin and one of her students. Although Watson had met Franklin only a few times, he mocked her throughout his memoir as a dowdy and bitter feminist who refused to collaborate with men. Watson and Crick received the Nobel Prize in 1962, alongside Franklin’s colleague Maurice Wilkins, and Watson felt licensed to tell the story as he pleased. Franklin died of cancer in 1958, a brilliant Jewish scientist unheralded for her painstaking research.

Thanks to the careful scholarship of several women, we can now appreciate the role that Rosalind Franklin played in the discovery of DNA, despite the sexist and racist environment in which she labored. And thanks to James Watson’s own mouth, we know that his chauvinism toward Franklin bespoke his broader prejudices against women and also people of color.

During our discussion of Watson’s memoir in seminar, my students debated whether science could ever be truly objective, given the brazen iniquities of some of its leading contributors. One of the students broached a disturbing thought experiment: What if a pediatric oncologist developed a cure for a ravenous cancer but, before he published, he was arrested for sexually abusing his patients? What if he refused to release the cure unless he was offered immunity from prosecution? Is there any scientific discovery important enough, any medical advance virtuous enough, that we could acquit a despicable man for the common good?

I interjected, a bit too curtly, that this is not a choice we will ever have to make. The thought experiment fundamentally misunderstands how science proceeds. My clever student was drawing a crude, albeit common, picture of science based on the fallacious premise of individual genius. Science simply does not issue from singular minds. It is a chorus, a community that thrives on fellowship and collective skill. So, the answer is simple. We indict the abuser, immediately.

Even James Watson would have understood that.

In his memoir, Watson described himself as merely one of a half dozen biologists who were converging on the double helix model of DNA. They were all competing to understand the structure of heredity, but they all relied on each other’s ideas and experiments to strengthen their own arguments. And every one of them was collaborating with several other colleagues and students. The resonance of their knowledge is what spurred their progress.

In his memoir, as in the years since, James Watson has made much — too much — of the flimsy efforts to link genetics and human intelligence. But he rightly admitted that no single intelligence discerned the structure of genes. That is why his memoir is so vibrant, despite its rank bigotry. Although we already know the conclusion to his story, Watson heightened the tension of scientific discovery by not simplifying how it occurred. He told us about the many players and their clever ideas, but also their many misses and false starts.

Franklin_Rosalind-445x540.jpg
MRC Laboratory of Molecular Biology/Wikimedia Commons
Rosalind Franklin with microscope in 1955.

Because that is how science proceeds: ploddingly, even fitfully, and with plenty of errors, like a full season of baseball. And that is why the pageantry of science can be so exciting. It is a team sport, with talented individuals who nonetheless fail most of the time. And yet, at any moment, these players may transcend their failures and inspire us with moments of indelible beauty, when they compete fairly and well.

Had Watson and Crick not realized the structure of DNA from Franklin’s photograph, another group of biologists would have, likely within weeks. Watson admitted as much in his book. And perhaps these other competitors would be even more deserving of our adulation because of how they played.

So, if the cure to a horrific cancer existed, we need not bend to one vile man to procure it. In fact, we need never elevate the scoundrels and cheats of any science to holy idols. There are always other contributors and supporting players whom we can commend.

The history of physics, on which I am writing a book, is flush with examples. Richard Feynman crafted elegant diagrams and a profound theory, but he was also a philanderer who abused his spouse. A cluster of physicists in war-torn Japan developed an equivalent theory, yet few people recognize their names today. Albert Einstein was certainly a genius, but he neglected his children and abandoned his wife, whose thankless labor allowed his mind to flourish. Robert Millikan quantified the charge of the electron, but he embroidered his data and snubbed a graduate student who did much of the work. He also supported an openly racist eugenics movement and has been rightly denounced as a white supremacist. A building is still named after him on the campus of Caltech.

Science is great despite some of the wretched men who helped make it. It would be even greater if we reckoned with its racist and misogynist past, reclaimed its forgotten players, and acknowledged how science is collectively done. That is the only way to create a more inclusive present.

Early last year, the trustees of Cold Spring Harbor Laboratory, where Watson was once the chancellor, took the first step. They revoked his honorary titles. This summer, they also removed his name from the graduate school and voted to create a program on the social implications of biology.

And earlier this month, the Nobel Prize Committee rightly awarded a share of the Prize in Physics to Andrea Ghez and the Prize in Chemistry to Emmanuelle Charpentier and Jennifer A. Doudna. In the future, scholars will not have to reclaim the contributions of these brilliant women from erasure, as they once did Rosalind Franklin.

But the Nobel Prize does not canonize saints. The Prize does not even reflect how science is done; it merely hardens the fiction of individual genius. And that is dangerous, in an era of global pandemics and climate change. Because the collective effort of the full congregation of scientists, from all races and creeds and genders, may be the only way to ensure the survival of us all.

This article was originally published on Undark. Read the original article.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Joshua Roebke
Joshua Roebke

Joshua Roebke is finishing a book on the social and cultural history of particle physics, titled “The Invisible World.” He won a Whiting Foundation Creative Nonfiction Grant and teaches literature and writing at the University of Texas at Austin.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

Can we make grad school more welcoming for all?
Essay

Can we make grad school more welcoming for all?

Dec. 11, 2024

The students and faculty at most of the institutions training the next generation of STEM professionals do not reflect the country’s diversifying demographics, leaving a gap in experience and cultural understanding.

I am not a fake. I am authentically me
Essay

I am not a fake. I am authentically me

Dec. 5, 2024

Camellia Moses Okpodu explains why she believes the term “imposter syndrome” is inaccurate and should be replaced.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

Scientists around the world report millions of new discoveries every year
Essay

Scientists around the world report millions of new discoveries every year

Nov. 24, 2024

Science is a collaborative endeavor, and international teams have contributed to a huge rise in scientific output.

Who decides when a grad student graduates?
Training

Who decides when a grad student graduates?

Nov. 15, 2024

Ph.D. programs often don’t have a set timeline. Students continue with their research until their thesis is done, which is where variability comes into play.

Redefining ‘what’s possible’ at the annual meeting
President's Message

Redefining ‘what’s possible’ at the annual meeting

Nov. 1, 2024

The ASBMB Annual Meeting is “a high-impact event — a worthwhile investment for all who are dedicated to advancing the field of biochemistry and molecular biology and their careers.”