News

Knocking out drug side effects with supercomputing

A Stanford team employs the world’s most powerful supercomputer in drug design efforts
Rachel Marisa Harken Tom Abate
By Rachel Marisa Harken and Tom Abate
November 21, 2020

Psychedelic drugs could be effective in treating psychiatric disorders such as depression and post-traumatic stress disorder, but medical use of these drugs is limited by the hallucinations they cause.

"What if we could redesign drugs to keep their benefits while eliminating their unwanted side effects?" asked Ron Dror, an associate professor of computer science at Stanford University. Dror's lab is developing computer simulations using the world's most powerful and smartest supercomputer for open science, the IBM AC922 Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), to help researchers do just that.

In an article published in Science, Dror's team describes discoveries that could be used to minimize or eliminate side effects in a broad class of drugs that target G protein-coupled receptors, or GPCRs. GPCRs are proteins found in all human cells. Lysergic acid diethylamide (LSD) molecules and other psychedelics attach to GPCRs—but so do about a third of all prescription drugs, including medications for allergies, blood pressure, and pain. So important is this molecular mechanism that Stanford professor Brian Kobilka shared the 2012 Nobel Prize in Chemistry for his role in discovering how GPCRs work.

When a drug molecule attaches to a GPCR, it can cause multiple simultaneous changes in the cell. Some of these changes might contribute to a drug's beneficial effects, but others can lead to less-than-desirable or even dangerous effects.

Supercomputing-890x319.jpg
Carl-Mikael Suomivuori, Stanford University
A visualization of two differing protein arrangements (conformations) for the angiotensin II type 1 receptor. The orange arrangement only allows for arrestin protein coupling, but the blue arrangement allows for both arrestin and g protein coupling. Simulations of receptor conformations can help researchers understand why some drugs cause unwanted side effects.

Using the OLCF's Summit and a computing cluster at Stanford, the team compared computer simulations of a GPCR with different molecules attached. Dror's team was then able to pinpoint how a drug molecule can alter the way a GPCR's atoms are ordered. Changing the protein's atomic arrangement affects the protein shape and can allow a drug molecule to deliver beneficial effects without side effects—something that has remained mysterious until now. Based on these results, the researchers designed new molecules that were shown computationally to cause beneficial changes in cells without unwanted changes. Although these designed molecules are not yet suitable for use as drugs in humans, they represent a crucial first step toward developing side-effect-free drugs.

Today, researchers typically test millions of drug candidates—first in test tubes, then in animals, and finally in humans—hoping to find a "magic" molecule that is both effective and safe, meaning that any side effects are tolerable. This massive undertaking typically takes many years and costs billions of dollars, and the resulting drug often still has some frustrating side effects.

The discoveries by Dror's team promise to allow researchers to bypass much of that trial-and-error work so that they can bring promising drug candidates into animal and human trials faster and with a greater likelihood of success.

Stanford postdoctoral scholar Carl-Mikael Suomivuori and former graduate student Naomi Latorraca led an 11-member team that included Robert Lefkowitz of Duke University, with whom Kobilka shared the Nobel Prize, and Andrew Kruse of Harvard University, Kobilka's former student.

"In addition to revealing how a drug molecule could cause a GPCR to trigger only beneficial effects, we've used these findings to design molecules with desired physiological properties, which is something that many labs have been trying to do for a long time," Dror said. "Armed with our results, researchers can begin to imagine new and better ways to design drugs that retain their effectiveness while posing fewer dangers."

Dror hopes that such research will eventually eliminate the dangerous side effects of drugs used to treat a wide variety of diseases, including heart conditions, psychiatric disorders, and chronic pain.

The team's simulations were performed under a computing allocation in the Innovative and Novel Computational Impact on Theory and Experiment program at the OLCF, a US Department of Energy (DOE) Office of Science User Facility located at DOE's Oak Ridge National Laboratory.

This story was written by Tom Abate at Stanford University and adapted by Rachel Marisa Harken at Oak Ridge National Laboratory.

Rachel Marisa Harken
Rachel Marisa Harken

Rachel Marisa Harken produces feature articles about the scientific research performed on the high-performance computing resources at Oak Ridge National Laboratory. Her focus is on fields such as biology, chemistry, physics, materials, fusion, and data science.

Tom Abate
Tom Abate

Tom Abate is a U.S. Navy veteran and former business owner who now works for Stanford University, helping to make scientific discoveries understandable and relevant to policy makers and the public.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

Brain Injury Awareness Month 2021
Health Observance

Brain Injury Awareness Month 2021

March 01, 2021

In the U.S., about 2.8 million people sustain a traumatic brain injury annually. Learn about recent research on TBI-related dementia, dysfunctional mitochondria and other work powering the march toward better therapies.

The evolution of proteins from mysteries to medicines
Essay

The evolution of proteins from mysteries to medicines

February 27, 2021

An essay in observance of National Protein Day.

'Every experiment and every breakthrough matters'
Health Observance

'Every experiment and every breakthrough matters'

February 26, 2021

An interview with NYMC dean Marina K. Holz, who studies a rare disease that affects women of childbearing age.

Progeria: From the unknown to the first FDA-approved treatment
Health Observance

Progeria: From the unknown to the first FDA-approved treatment

February 25, 2021

Hutchinson–Gilford progeria syndrome is a rare, fatal genetic disease that causes premature aging.

Raising awareness and funding for Pompe disease
Health Observance

Raising awareness and funding for Pompe disease

February 25, 2021

Father-turned-advocate has founded multiple organizations to support families and search for better therapies for people with rare lysosomal storage disorder.

A novel approach to septic shock leads to a prospective new therapy
Journal News

A novel approach to septic shock leads to a prospective new therapy

February 23, 2021

A French research team finds new evidence supporting endotoxin removal for treating life-threatening inflammation.