Lipid News

Ceramides’ role in liver disease

Eleonora Scorletti Rotonya M. Carr
By Eleonora Scorletti and Rotonya M. Carr
May 5, 2021

Alcoholic liver disease, or ALD, is a chronic condition that includes hepatic steatosis, steatohepatitis, fibrosis and cirrhosis. Nonalcoholic fatty liver disease, or NAFLD, is a chronic condition with histological progression similar to ALD, but its pathogenesis is due in large part to diets high in fat and sugar rather than heavy alcohol consumption.

Ceramides-445x445.jpg

The early stages of both ALD and NAFLD are characterized by excessive accumulation of lipid droplets within hepatocytes. Perilipin 2, or PLIN2, is the most abundant hepatocellular lipid droplet protein. In both ALD and NAFLD, PLIN2 is upregulated and is associated with hepatic accumulation of ceramides.

Ceramides are biologically active sphingolipids that have roles in apoptosis, inflammation and insulin resistance, all critical factors in the pathogenesis of both ALD and NAFLD. Accumulation of ceramides inhibits insulin signaling and promotes insulin resistance. Ceramides can inhibit protein kinase B activity either through the activation of protein phosphatase 2A or protein kinase c isoform zeta. In addition, ceramides impair fatty acid beta-oxidation by promoting mitochondrial fission.

The liver is a key organ for the production of ceramides, the synthesis of which takes place by three pathways: (1) synthesis from simple molecules, which requires several enzymes, including dihydroceramide desaturase 1, or DES1, and ceramide synthase, or CerS, enzymes; (2) sphingomyelin hydrolysis by sphingomyelinases; and (3) lysosomal salvage of complex sphingolipids that requires acid ceramidase, an enzyme that deacylates ceramides into sphingosine and fatty acids and is encoded by the ASAH1 gene.

Recent studies showing that reduction of ceramide synthesis can improve steatosis and insulin resistance have elucidated the critical role of ceramide synthetic pathways in ALD and NAFLD. As our lab reported in the FASEB Journal and Philipp Hammerschmidt and colleagues reported in the journal Cell, reduction of synthesis of ceramide C16:0 using both pharmacologic and genetic models of CerS reduction prevents lipid droplet accumulation and insulin resistance in experimental models of ALD and NAFLD.

Prevention of steatosis and improvement of insulin resistance involve mechanisms that are dependent on PLIN2 and that prevent mitochondrial fragmentation. Moreover, liver-specific induction of lysosomal acid ceramidase through ASAH1 overexpression improves hepatic insulin sensitivity and ameliorates alcoholic steatosis through very low-density lipoprotein–mediated and lipophagy-mediated mechanisms. Finally, tissue-specific and DES1 null mice fed a high-fat diet have increased levels of dihydroceramides, reduced accumulation of ceramides synthesis (including C16:0 ceramides), reduced steatosis and increased glucose tolerance.

An increasing body of evidence supports the view that reducing hepatic ceramide production improves hepatic lipid accumulation and insulin resistance in ALD and NAFLD. However, little is known about therapies that safely lower ceramides in humans and improve patient health. Further studies are needed to better understand how ceramides affect liver function, with the eventual aim of developing targeted treatments for ALD, NAFLD and insulin resistance.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Eleonora Scorletti
Eleonora Scorletti

Eleonora Scorletti is a postdoctoral researcher in Rotonya M. Carr’s lab in the division of gastroenterology at the University of Pennsylvania.

Rotonya M. Carr
Rotonya M. Carr

Rotonya M. Carr is director of the Liver Metabolism and Fatty Liver Program and an associate professor of medicine in the division of gastroenterology at the University of Pennsylvania.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Does a protein hold the key to Alzheimer’s?
Journal News

Does a protein hold the key to Alzheimer’s?

Dec. 10, 2024

Researchers in Maryland and Massachusetts team up to study how SORL1 promotes tau trafficking and seeding in cells that leads to the neurodegenerative disorder.

Cracking the recipe for perfect plant-based eggs
News

Cracking the recipe for perfect plant-based eggs

Dec. 8, 2024

It involves finding just the right proteins. With new ingredients and processes, the next generation of substitutes will be not just more egg-like, but potentially more nutritious.

MSU researchers leverage cryo-EM for decades-in-the-making breakthrough
News

MSU researchers leverage cryo-EM for decades-in-the-making breakthrough

Dec. 7, 2024

Lee Kroos and Ben Orlando have reported the first high-resolution experimentally determined structures of the intramembrane protease SpolVFB.

From the Journals: MCP
Journal News

From the Journals: MCP

Dec. 6, 2024

Rapid and precise SARS-CoV-2 detection using mass spec. Mapping brain changes from drug addiction. Decoding plant osmotic stress response. Read about recent MCP papers on these topics.

What seems dead may not be dead
Award

What seems dead may not be dead

Dec. 4, 2024

Vincent Tagliabracci will receive the Earl and Thressa Stadtman Distinguished Scientist Award at the ASBMB Annual Meeting, April 12–15 in Chicago.

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Molecular Parasitology at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.