Breaker ‘vastly expanded
our appreciation of the versatility
of noncoding RNAs in biology’
Ronald R. Breaker of the Howard Hughes Medical Institute and Yale University, has won the 2016 American Society for Biochemistry and Molecular Biology–Merck Award. The award recognizes outstanding contributions to research in biochemistry and molecular biology.

Breaker has done pivotal work establishing the importance of ligand-binding RNAs in biology. He discovered and characterized more than 30 natural allosteric RNAs, called riboswitches, and showed that they demonstrate complex behavior, melding cooperative binding, dual ligand binding and intrinsic catalytic activity. In addition, he engineered the first examples of RNA switches and enzymes made of DNA. His group’s development of key bioinformatics tools also paved the way for the discovery of numerous functional noncoding RNAs that are essential for bacterial survival.
In his letter nominating Breaker for the award, Thomas Pollard at Yale recounted Breaker’s many discoveries, including riboswitches. “Breaker and his co-workers independently discovered and studied 24 of the 25 classes of metabolite-binding riboswitches reported to date,” Pollard said. Riboswitches are regulatory segments of a messenger RNA molecule that have the ability to bind a small molecule, thereby changing the expression of the protein encoded by the mRNA.
As a result of selective binding to small molecules like co-enzymes, amino acids and ions, riboswitches control the expression of many key metabolic genes in all types of organisms.
Breaker and his group not only discovered riboswitches but identified that they are structurally complex and can function as cooperative or tandem “digital” switches, co-factor-mediated ribozymes and allosteric ribozymes. In addition, most riboswitches operate in the absence of proteins and as a result played a role in how our early ancestors were able to regulate complex biological processes prior to the evolution of proteins.
Before the discovery of riboswitches, the Breaker group used directed evolution to create the first examples of engineered RNA switches and catalytic DNAs. As a result of his work, a field of RNA switch engineering has emerged, and the switches now are used as biosensors and as designer gene control elements in synthetic biology experiments. Their creation of the first catalytic DNAs led to the discovery that enzymes made of DNA or RNA can exploit cofactors to increase their catalytic power just like protein enzymes. This work validated DNA as the third natural polymer with enzymatic activity.
Breaker’s work has established that riboswitches are in bacterial pathogens and can serve as antibacterial drug targets. His work also has established theoretical speed limits for various catalytic strategies by proteins, RNAs and DNAs. According to Pollard, “These studies using biochemical and molecular biological methods by Ron Breaker and his colleagues vastly expanded our appreciation of the versatility of noncoding RNAs in biology.”
Breaker has a bachelor’s degree in biology with a chemistry minor from the University of Wisconsin, Stevens Point, and a Ph.D. in biochemistry from Purdue University. He is a Howard Hughes Medical Institute investigator, and his honors include election to the National Academy of Sciences and the Eli Lilly Award from the American Society of Microbiology. He holds several patents for his discovery of riboswitches and methods for their use as well as nucleic acid catalysts.
Watch Breaker’s award lecture, “Prospects for noncoding RNA discovery in bacteria,” below.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles

ASBMB names 2026 award winners
Check out their lectures at the annual meeting in March in the Washington, D.C., metro area.

Peer through a window to the future of science
Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Castiglione and Ingolia win Keck Foundation grants
They will receive at least $1 million of funding to study the biological mechanisms that underly birds' longevity and sequence–function relationships of intrinsically disordered proteins.

How undergrad research catalyzes scientific careers
Undergraduate research doesn’t just teach lab skills, it transforms scientists. For Antonio Rivera and Julissa Cruz–Bautista, joining a lab became a turning point, fostering critical thinking, persistence and research identity.

Simcox and Gisriel receive mentoring award
They were honored for contributing their time, knowledge, energy and enthusiasm to mentoring postdocs in their labs.

ASBMB names 2025 Marion B. Sewer scholarship recipients
Ten undergraduates interested in biochemistry and molecular biology will each receive $2,000 toward their tuition and related educational costs.