Award

Reue recognized as a ‘leader in the field of lipid and energy metabolism’

She won the ASBMb's 2015 Avanti Award In Lipids
Mark Stewart
By Mark Stewart
March 1, 2015

Karen Reue, professor and interim chair of human genetics and professor of medicine at the University of California, Los Angeles, won the Avanti Award in Lipids from the American Society for Biochemistry and Molecular Biology. The award recognizes Reue’s novel contributions to our understanding of lipid metabolism and homeostasis.

Karen-Reue-web.jpg "I am truly honored and excited to receive the Avanti award, which previously has been presented to some of my personal heroes in the field of lipid research. I acknowledge the many wonderful mentors, colleagues and trainees who have influenced my work over the years." — KAREN REUE

Reue’s scientific success is, in part, due to “her expertise in both mouse genetics, especially as applied to lipid metabolism, and molecular biology,” said Peter Edwards at the University of California, Los Angeles, who nominated Reue for the award.

Using naturally occurring mutations in mice and positional cloning, Reue identified the lipin gene family (lipin-1, lipin-2 and lipin-3). The three lipin proteins are phosphatidate phosphatases required for the conversion of phosphatidic acid to diacylglycerol. Reue’s work has demonstrated that lipin proteins play critical roles in adipogenesis and triacylglycerol storage, energy metabolism and insulin sensitivity in skeletal muscle, and lipid homeostasis in the aging brain. Recently, Reue’s laboratory identified a role for lipin-1 in autophagy, which may relate to the disease symptoms of lipin-1-deficient individuals.

“The lipin proteins are now studied in numerous laboratories in several countries, an indicator of the important biological role of the lipin proteins,” says Rudolf Zechner of the Institute of Molecular Biosciences in Graz, Austria.

Reue’s lab also identified an additional novel gene, Diet1, isolated from a mouse strain resistant to high blood-cholesterol levels. Inactivating mutations in Diet1 impair signaling from the intestine to the liver, resulting in excess cholesterol being converted to bile acids. These bile acids are secreted into the intestine and subsequently are excreted from the body. These metabolic changes prevent the accumulation of excess cholesterol in the blood.

Future work will explore the role of Diet1 genetic variants in human cholesterol homeostasis. It is hoped that such studies may explain why certain people are resistant to hypercholesterolemia. “The significance of Diet1 in physiology and its potential as a therapeutic target have been widely recognized,” says Stephen Young at the University of California, Los Angeles.

Alan Attie from the University of Wisconsin-Madison said Reue “thinks deeply about important questions in biology and finds elegant ways to study them.” Zechner added that “a hallmark of her research is the comprehensive nature of the studies.”

Reue earned her Ph.D. from the University of California, Los Angeles, after which she began her postdoctoral training at The Rockefeller University in New York. Reue returned to UCLA and rose through the ranks to professor. Reue’s work has been funded continuously by the National Institutes of Health.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Mark Stewart
Mark Stewart

Mark Stewart is a Ph.D. student in the University of Alabama at Birmingham’s cancer biology program and works in the pathology department.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Feature

Before we’ve lost what we can’t rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

ASBMB members recognized as Allen investigators
Member News

ASBMB members recognized as Allen investigators

July 14, 2025

Ileana Cristea, Sarah Cohen, Itay Budin and Christopher Obara are among 14 researchers selected as Allen Distinguished Investigators by the Paul G. Allen Family Foundation.

AI can be an asset, ASBMB educators say
Advice

AI can be an asset, ASBMB educators say

July 9, 2025

Pedagogy experts share how they use artificial intelligence to save time, increase accessibility and prepare students for a changing world.

ASBMB undergraduate education programs foster tomorrow’s scientific minds
Feature

ASBMB undergraduate education programs foster tomorrow’s scientific minds

July 8, 2025

Learn how the society empowers educators and the next generation of scientists through community as well as accreditation and professional development programs that support evidence-based teaching and inclusive pedagogy.

Honors for Gagna and Sundquist
Member News

Honors for Gagna and Sundquist

July 7, 2025

Claude Gagna is being honored for the diagnostic tool he developed that uses AI to streamline diagnostics. Wesley Sundquist is being honored for his role in finding that HIV’s capsid was a target for treatment.