Generations

Regeneration of a transgenic mouse model

Maggie Kuo
February 01, 2015

Nicole Ward came upon her psoriasis mouse serendipitously. Ward, an associate professor in the department of dermatology at Case Western Reserve University, was working in the department of anatomy there when she discovered the mouse. A neuroscientist by training, she was studying how nerves and blood vessels influence each other’s development. Ward was using a transgenic mouse line, the keratinocyte-Tie2 or KC-Tie2 mouse, to manipulate cells in the skin and study how they changed the surrounding blood vessels and nerves. She noticed that the skin of these mice was patchy red and scaly like that of her father, who suffers from psoriasis.

Nicole Ward in her lab Nicole Ward BILLY DELFS

Ward’s office happened to be across the hall from faculty members in the dermatology department, and she interacted with them every day. After two years with the anatomy department, she joined the dermatology department, moved across the hall and started characterizing the mouse she was using to study nerve development as a model of psoriasis.

The KC-Tie2 mouse is a remarkably accurate model of psoriasis. Ward and her research team showed that the skin disease developed by the mouse is very similar to human psoriasis physically and biochemically. The mouse also responds to drugs that work in patients and, more impressively, does not respond to drugs that do not work in patients.

“Most of the time when people are testing their models against human disease, they just make sure that the drugs that work in patients work in their mouse model. We’re really aware that it’s equally important to demonstrate that drugs that have failed in clinical trials, that don’t improve
the patient’s disease, also fail in the mouse model,” Ward says. “So this mouse has been able to do that.”

Results from the KC-Tie2 mouse have been translatable to psoriasis patients. Ward’s latest findings were recently published in the journal Molecular & Cellular Proteomics. See a related story in the Journal News section of this issue.

Because the KC-Tie2 mouse was developed originally to study nerve development, the fact that it developed psoriasis suggested a connection between the two. This link has been observed anecdotally in psoriasis patients who have undergone knee surgery. After the procedure, “the (psoriasis) plaque on the knee that was operated on goes away so there was speculation among the clinical dermatologists that perhaps the nervous system was contributing to the disease,” explains Ward. “There are other similar reports of injury to the nervous system and then remission of the psoriasis in the areas where the nerves had been damaged.”

To elucidate the basis for these observations, Ward and her team surgically removed the nerves from the skin of the KC-Tie2 mouse, and the psoriasis improved. After figuring out that certain neural peptides were elevated in the psoriatic skin, they removed the nerves in the skin and put back only the peptides. The psoriasis returned. To verify the causal role of the peptides, they kept the nerves in the skin but blocked the release of the peptides, and again the disease went away.

Since Ward moved across the hall in 2005, she has been investigating psoriasis and skin inflammation full-time. Ward has not left behind her neuroscience roots, though.

“I’m lucky I get to play a little bit in the neuroscience sandbox because psoriasis is a very cool disease if you’re studying disease pathogenesis. You have so many cell types that are contributing to the inflammation. You have the keratinocytes, the nerves, the blood vessels and all those immune cells,” she says. “I always tell patients when I’m talking to them, ‘You know, the disease is absolutely fascinating at the scientific level.’ It’s like a big, ginormous nerd alert, right? But it’s like so, so cool.”

 

 
Maggie Kuo

Maggie Kuo was an intern at ASBMB Today when she wrote this story. Today she is a writer at the American Physiological Society. She earned her Ph.D. in biomedical engineering at Johns Hopkins University.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Opinions

Opinions highlights or most popular articles

A small trial finds that hydroxychloroquine is not effective for treating coronavirus
News

A small trial finds that hydroxychloroquine is not effective for treating coronavirus

April 05, 2020

Despite the recent approval of this drug for use against COVID-19, questions remain as to the efficacy of this treatment.

This week's staff picks
Stroopwafels

This week's staff picks

April 04, 2020

Simmering sauce, making art, playing games and looking for a laugh. Read about what our staff has been up to this week.

Why we're not printing the April issue
Editor's Note

Why we're not printing the April issue

April 02, 2020

One of the strangest things we ever did when I was in the newspaper business was print papers nobody would receive.

Research on a budget
Essay

Research on a budget

March 30, 2020

As a professor at a small university, Peter Lyons has developed ways of reaching his research goals with limited funding, and he shares some of them here.

This week's staff picks
Stroopwafels

This week's staff picks

March 28, 2020

Lunchtime doodles, blind love, addressing inequities, yoga breathing and more. Here's what the ASBMB staff has been reading, watching, listening to — and doing.

Science Twitter: Personal boundaries on a professional platform
Social Media

Science Twitter: Personal boundaries on a professional platform

March 25, 2020

“Success on Twitter has a different definition for every user ... I felt I needed to find the perfect balance of personality: one that is professional, intelligent, and advocates on behalf of meaningful causes but is still likable and relatable.”